
Performance Analysis of iSCSI Middleware Optimized for Encryption
Processing in a Long-Latency Environment

Kikuko Kamisaka

Graduate School of

Humanities and Sciences

Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku,

Tokyo 112-8610, Japan

kikuko@ogl.is.ocha.ac.jp

Saneyasu Yamaguchi

Institute of Industrial Science

The University of Tokyo

4-6-1, Komaba, Meguro-ku,

Tokyo 153-8505, Japan

sane@tkl.iis.u-tokyo.ac.jp

Masato Oguchi

Department of Information Sciences

Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku,

Tokyo 112-8610, Japan

oguchi@computer.org

Abstract

Since IP-SAN allows us to reduce initial costs and man-
agement costs of storage by using IP networks, iSCSI, com-
mon protocol in IP-SAN, is becoming more important. Al-
though one of the key issues for iSCSI is a security measure
to access remote storage over IP networks, this is not nec-
essarily established yet. iSCSI can employ IPsec that offers
a function of strong encryption. However, the IPsec encryp-
tion processing degrades throughput of storage access and
increases its CPU load. In addition, it is difficult to exe-
cute encryption processing efficiently, because IPsec layer
is located in a lower-level.

In this paper, we implemented a middleware system of
executing encryption processing in the upper-layer for the
communication using iSCSI securely and effectively. More-
over, we simulated the idea of optimization of encryption
processing and evaluated its performance by running par-
allel processes in a long-latency network. As a result, opti-
mazation method of encryption processing is more efficient
than that of IPsec in a long-latency network.

1 Introduction

Recently, with rapid performance improvement of In-
ternet and other networks, a volume of data stored and
managed in a storage system grows exponentially. Storage
Area Network (SAN), a high-speed network used to con-
nect servers to storage, has been introduced to resolve this
issue. SAN allows us to reduce the management costs by
consolidating storage so as to be managed in a centralized
manner.

Nowadays, current generation SAN based on Fibre
Channel (FC) technology is commonly used to establish

high-speed storage networks. However, due to high costs of
FC hardware and lack of FC engineers, there are lots of bar-
riers for the introduction of SAN. With the advent of broad-
band LAN technologies such as Gigabit Ethernet, the next
generation SAN based on IP has been proposed. Because
IP-SAN is established using TCP/IP protocol and Ethernet,
it enables us to reduce costs of introduction and manage-
ment compared with FC-SAN. In addition, it is possible to
provide seamless integration with existing IP networks and
construct storage networks flexibly.

Internet SCSI (iSCSI) protocol, ratified by the IETF in
February 2003, is expected to become a dominant IP-SAN
protocol in the near future[1]. iSCSI is a block level data
transfer protocol, in which a SCSI command is encapsu-
lated into TCP/IP packets and transferred between a server
(initiator) and storage (target) over IP networks. Since stan-
dard SCSI commands are embedded in iSCSI, users can op-
erate a remote storage device over the Internet as if they
were accessing to a local disk connected to the server di-
rectly.

When we communicate through the iSCSI networks us-
ing TCP/IP protocol, we need to reflect security measures.
iSCSI can employ IPsec that offers strong encryption and
authentication function of IP packets. IPsec commonly em-
ploys safe and secure symmetric-key cryptographic algo-
rithm, such as Triple Data Encryption Standard (3DES).
However, since storage access using iSCSI requires send-
ing and receiving large volumes of data, the 3DES encryp-
tion processing needs a large amount of calculations. Thus
it degrades the performance of communication and burdens
the CPU with a heavy load. In addition, because IPsec en-
crypts in the IP layer located on a lower-level, it can only se-
quentially process data packets passed from an upper-layer.
Therefore, it cannot respond flexibly to the processing in the
upper-layer such as TCP layer, so that it can be difficult to

execute encryption effectively.
In this paper, for comprehending the processing in the

upper-layer and executing efficient encryption, we have im-
plemented an iSCSI middleware system that encrypts in the
upper-layer. In addition, we have evaluated our middle-
ware system by running parallel processes for simulating
optimization of encryption processing in a long-latency net-
work. We have also analyzed the result by a throughput
modeling and TCP packets visualization. As a result, our
proposal, optimization method of encryption processing, is
more efficient than using IPsec in a long-latency network.

The rest of this paper is organized as follows. Section 2
provides our proposed method. We present an performance
evaluation of our implemented system in Section 3 and its
analysis in Section 4 and 5. Section 6 introduces related
works. In Section 7, we conclude this paper.

2 Optimization of Encryption processing in
the Upper-layer

In this section, we present explanation of our proposed
method.

There is an issue of performance degradation of storage
access caused by IPsec in order to connect to storage se-
curely. While IPsec can encrypt data transparently with-
out changing upper software, the 3DES encryption process-
ing employed in IPsec causes the performance degradation.
IPsec is located on the lower-level (IP layer) and it only se-
quentially processes data passed from the upper-layer. Thus
it is difficult to encrypt data effectively and to devise meth-
ods for improving performance.

In our proposed method[2], transferred data is encrypted
in the upper-layer so as to respond processing such as in
TCP layer flexibly. Thereby, it enables the system to ap-
ply a performance improvement method an optimization of
encryption processing easily.

Figure 1 shows an example of sequential read access us-
ing iSCSI in the case of encrypting in the upper-layer. First,
an iSCSI read command is issued from an initiator to a
target. After data is read from the target’s disk, it is en-
crypted in the upper-layer at the target. Transferred data is
decrypted in the upper-layer at the initiator and Ack is sent
back to the target. In this case, while the one machine is
encrypting or decrypting, waiting time for communications
exists at the other machine. Figure 2 shows an example of
sequential read access using iSCSI in the case of optimiz-
ing the encryption processing in the upper-layer. As shown
in this figure, if the optimization of encryption processing
is added to the upper-layer, for instance, it is possible to
encrypt the next data during waiting time for communica-
tions. Overwrapping the iSCSI encryption cycle makes ef-
fective use of CPU availability and the system performance
improvement is assumed.

SCSI DataSCSI Data

Encryption

Decryption
Read

Command
Read

Command

Initiator

Target

Waiting time for
communications

Read
Command
Read
Command

Encryption

SCSI DataSCSI Data

1 Cycle

Decryption

1 Cycle

Waiting time for
communications

Time

Figure 1. iSCSI Sequential Read Access with
an Encryption in the Upper-layer

Read
Command

Read
Command

Initiator

Target Encryption

SCSI DataSCSI Data

Decryption

SCSI DataSCSI Data

Encryption

Read
Command

Read
Command

1 Cycle

Decryption

1 Cycle

Time

Figure 2. iSCSI Sequential Read Access with
an Optimization of Encryption Processing in
the Upper-layer

3 Evaluation of our middleware system

3.1 Implementation and Experimental Setup

In this paper, we have implemented a system as mid-
dleware based on the method of encryption processing in
the upper-layer. Figure 3 shows our middleware system.
Our system is implemented as an encryption function lo-
cated on the upper-layer in the initiator. In the target,
we construct the upper encryption middleware as a kernel
module. Though the optimization of encryption processing
mentioned in the previous section is not implemented in the
system, the function is due to be incorporated in the middle-
ware. We use the same 3DES implementation code as IPsec
in our middleware.

Table 1 shows the experimental environment. iSCSI ref-
erence implementation developed by the University of New
Hampshire InterOperability Laboratory is used[3]. As an
IPsec implementation, FreeS/WAN for Linux[4] is used.
IPsec is set up with a transport mode used to encrypt a host-
to-host communication, and an ESP protocol is used.

We have constructed a no-latency and long-latency IP-
SAN environment. In the no-latency network (one-way de-
lay time is 0ms), the experimental system consists of the
initiator and the target connected with the Gigabit Ethernet.
In contrast, a network delay emulator is inserted between
the initiator and the target in the long-latency network (one-
way delay time is from 1ms to 8ms). The network delay
emulator is constructed with FreeBSD Dummynet.

2

Middleware
File System

IP
Ethernet Driver

TCP

Ethernet

iSCSI Driver
SCSI Driver

Block/Char device

Middleware
File System

IP
Ethernet Driver

TCP

Ethernet

iSCSI Driver
SCSI Driver

Block/Char device Middleware

Ethernet Driver
IP

Ethernet

TCP
iSCSI Driver
SCSI driver

Middleware

Ethernet Driver
IP

Ethernet

TCP
iSCSI Driver
SCSI driver

Initiator (Server) Target (Storage)

Encryption/
Decryption

Application

Encryption/
Decryption

disk

IP NetworkIP Network

user space

kernel space kernel space

Figure 3. Our Middleware System

Table 1. Experimental System
OS Initiator : Linux 2.4.18-3

Target : Linux 2.4.18-3
　 Dummynet : Free BSD 4.9 - RELEASE
CPU Intel Xeon 2.4GHz
Main Memory 512MB DDR SDRAM
HDD 36GB SCSI HD
NIC Initiator, Target : Intel PRO/1000XT

Dummynet : Intel PRO/1000MT
Server Adapter on PCI-X
(64bit, 100MHz)

iSCSI UNH-iSCSI Initiator and
Target for Linux
ver. 1. 5. 3

IPsec FreeS/WAN ver. 2.01

3.2 Evaluation Experiment

We evaluate our middleware system by experiments in
order to test the effectiveness of our proposed method, op-
timization of encryption processing. In this experiment, we
measure performance of iSCSI sequential read access to the
target’s raw device, and compare it with the performance of
IPsec.

Though we use our middleware system that encrypts data
in the upper-layer, optimization of encryption processing
is not implemented yet. Thus, we issue parallel processes
for simulating the optimization of encryption processing.
In our middleware system, first, multiple iSCSI read com-
mands are issued as parallel processes from the initiator to
the target. Next, plain data stored in the target’s disk is en-
crypted at target’s middleware located on the upper-layer.
Even though waiting time for communications is long, our
middleware encrypts the data consecutively, thus CPU idle
time is reduced at the target. The encrypted data are trans-
ferred to the initiator via IP networks and are decrypted on
the upper-layer in the initiator. As stated above, the evalua-
tion of sequential read access using parallel processes sim-
ulates optimization of encryption processing.

0
1
2
3
4
5
6
7
8
9

10
11

4 8 16 32 64 128 256 512

Block Size [KB]

Th
ro

ug
hp

ut
 [M

B
/s

ec
]

IPsec 1process 2processes
3processes 4processes

Figure 4. Throughput in a No-latency Network

0
1
2
3
4
5
6
7
8
9

10
11

4 8 16 32 64 128 256 512

Block Size [KB]

Th
ro

ug
hp

ut
 [M

B
/s

ec
]

IPsec 1process 2processes
3processes 4processes

Figure 5. Throughput in 4ms Latency Network

In contrast, because IPsec cannot deal with a process-
ing on the upper-layer, it is difficult for IPsec to realize the
highly functional processing such as the optimization of en-
cryption processing. Accordingly, in IPsec as a comparison,
we evaluate iSCSI sequential read access with a single pro-
cess.

3.3 Throughput Results

The experimental throughput results are shown in Figure
4，5 and 6. In the case of large block size, there is not so
much throughput difference between our system and IPsec.
In contrast, in the case of small-to-medium block size, the
throughput of our system is much higher than that of IPsec.
In this regard, though these figure shows the results from
4KB to 512KB block size, the throughput of IPsec is satu-
rated in a block size of more than 512KB in all cases.

Table 2 shows an average throughput improvement ra-
tio against IPsec in each one-way delay time. Though the
throughput of our system with a single process is lower than
that of IPsec, the throughput of our system with three or
four processes improve considerably compared with IPsec.
Our system’s throughput of four processes in a no-latency
network achieves about 1.2 times of IPsec. Moreover, as
one-way delay time increases, the improvement ratio be-

3

0
1
2
3
4
5
6
7
8
9

10
11

4 8 16 32 64 128 256 512

Block Size [KB]

Th
ro

ug
hp

ut
 [M

B
/s

ec
]

IPsec 1process 2processes
3processes 4processes

Figure 6. Throughput in 8ms Latency Network

Table 2. Throughput Improvement Ratio

one-way IPsec our system
delay time 1process 2processes 3processes 4processes

0ms 1.000 0.606 0.997 1.120 1.164
1ms 1.000 0.667 1.237 1.608 1.889
2ms 1.000 0.696 1.342 1.796 2.127
4ms 1.000 0.800 1.571 2.194 2.658
8ms 1.000 0.777 1.556 2.239 2.865

Table 3. Average CPU Utilization (Target)

one-way IPsec our system
delay time 1process 2processes 3processes 4processes

0ms 78.571 68.491 76.672 77.768 79.201
8ms 24.632 17.356 35.389 47.499 56.387

comes higher. Our system’s throughput of four processes in
8ms one-way delay time achieves 2.9 times of IPsec. This is
because CPU availability (waiting time for communication)
becomes longer as one-way delay time becomes longer. In
fact, the advantage of optimized encryption processing in-
creases in a long-latency network by encrypting next data
consecutively before the previous encryption cycle is fin-
ished.

3.4 CPU utilization results

The experimental CPU utilization results are shown in
Figure 7 and 8. The CPU utilization is measured in every
second by “iostat” tool at the target. Table 3 shows an aver-
age of CPU utilization.

In our system, as the number of process is larger, the
CPU load becomes heavier. In the case of the no-latency
network, the CPU utilization is saturated and reaches about
80% in both our system and IPsec. In contrast, in the case of
the long-latency network, the CPU utilization of our system
with more than two processes is higher than that of IPsec.
However, our system’s CPU in the long-latency network

0
10
20
30
40
50
60
70
80
90

100

4 8 16 32 64 128 256 512

Block Size [KB]

C
PU

 U
til

iz
at

io
n

[%
]

IPsec
1process
2process
3process
4process

Figure 7. CPU Utilization in a No-latency Net-
work (Target)

0
10
20
30
40
50
60
70
80
90

100

4 8 16 32 64 128 256 512

Block Size [KB]
C

PU
 U

til
iz

at
io

n
[%

]

IPsec
1process
2process
3process
4process

Figure 8. CPU Utilization in 8ms Latency Net-
work (Target)

can still afford to process different from the case with the
no-latency network. The average of CPU utilization of our
system with four processes is 56% maximum. We assume
that the next data encryption processing begins concurrently
during the waiting time for communications because com-
munication time becomes longer in the case of the long-
latency network.

3.5 Security Concerns

From a security standpoint, in the case of a tunnel mode
that encrypts transferred data from gateway to gateway,
IPsec encrypts data and header in TCP layer. In this exper-
iment, our system does not encrypt TCP header. However,
in this evaluation, because IPsec uses a transport mode, IP
header is not encrypted in both our system and IPsec. Thus,
security level is almost the same in both cases.

4 Analysis of TCP packets transfer

In this section, for confirming the encryption behavior
of our system and IPsec, we visualize a behavior of TCP
packets transferred between the initiator and the target by

4

Target

Initiator

 2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.5

Time[sec]

Ack (Initiator->Target)
Data Packet (Target->Initiator)

SCSI Command (Initiator->Target)

Figure 9. TCP packet transfer : IPsec

capturing them with a tcpdump tool. The block size is 64KB
and one-way delay time is 8ms. Figure 9 shows an example
of a TCP packets transfer in IPsec. Figure 10 and 11 show
examples of a TCP packets transfer in our system using a
single and two processes, respectively.

In the case of IPsec, a data segment is divided into a
small size packets and encrypted after they are passed to IP
layer located on the lower-level. Thus, the encryption time
is short per one data packet and it is about 0.1ms as shown
in Figure 9. In contrast, in the case of our system in a single
process, data segments are encrypted in bulk in the upper-
layer. The encryption time is long per one packet and it is
about 6.7ms as shown in Figure 10.

In addition, more SCSI read commands are issued con-
currently in our system Figure 11 compared with a single
process case. Therefore, these figures illustrate that the en-
cryption processing in two processes can be parallelized dif-
ferent from IPsec.

5 Throughput modeling

In this section, we state an analysis of the experimental
results in our middleware system by modeling the through-
put.

First, the initiator issues a SCSI read command. Next,
encrypted data segments are transferred from the target and
decrypted in the initiator. We refer to this sequence as 1
cycle time in this section. The following equation is a re-
lational expression of 1 cycle time (1CYCLE), data trans-
fer time (TRANSFER), Round Trip Time (RTT), encryption
time (ENC) and decryption time (DEC).

1CYCLE

� ��� � ������������ ���� (1)

Thus, the projected throughput of sequential read ac-
cess in our system with a single process is modeled as
the following Equation (2) using block size (BLOCK), en-

Target

Initiator

 2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.5

Time[sec]

Ack (Initiator->Target)
Data Packet (Target->Initiator)

SCSI Command (Initiator->Target)

Figure 10. TCP packet transfer : our system
(a single process)

Target

Initiator

 2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.5

Time[sec]

Ack (Initiator->Target)
Data Packet (Target->Initiator)

SCSI Command (Initiator->Target)

Figure 11. TCP packet transfer : our system
(two processes)

cryption throughput (ECN TH) and decryption throughput
(DEC TH).

THROUGHPUT

�
	
���

��� �
�����

������
�

�����

��� �	
�

�����

�� �	

(2)

The throughput of the lower-layer (SOCKET) is that of
below iSCSI-layer. In fact, this is the value in a simple
socket communication without iSCSI.

On the other hand, as shown in Figure 2, the relational
expression of throughput in the optimization is modeled as
the following Equation (3). The 3DES algorithm works
about the same in both an encryption and a decryption. We
assume that the decryption time is the same as encryption
time. Because the next data segments are encrypted during
waiting time for communications, decryption time is hidden
by encryption time.

THROUGHPUT

�
	
���

��� �
�����

������
�

�����

�� �	

(3)

5

Table 4. Calculated Throughput and Actual
Measurement in a Single Process

Block Size Calculated Value Actual Measurement
(MB/sec) (MB/sec)

4KB 3.867 1.192
8KB 4.266 4.844
16KB 4.348 4.649
32KB 4.608 4.547
64KB 4.624 4.446
128KB 4.663 4.381
256KB 4.698 4.428
512KB 4.734 4.477

Table 5. Calculated Throughput and Actual
Measurement in Two Processes

Block Size Calculated Value Actual Measurement
(MB/sec) (MB/sec)

4KB 6.192 1.284
8KB 7.301 8.106
16KB 7.781 7.995
32KB 8.409 8.282
64KB 8.546 8.164
128KB 8.672 7.858
256KB 8.762 8.150
512KB 8.840 7.647

Table 4 shows calculated values from the Equation (2)
and actual measurements with a single process in a no-
latency network. The values of the calculated throughput
using the modeling are very close to the actual measure-
ments except a 4KB block size. It is demonstrated that the
throughput modeling by Equation (2) is almost correct.

Table 5 shows calculated values from the Equation (3)
and actual measurements with two processes in a no-latency
network. From Table 5 in the case of optimizing of encryp-
tion processing, though the values of actual measurement
have varied a bit through the block sizes, the calculated
throughput and the actual measurements are about the same
except a 4KB block size.

As mentioned above, from these modeling equations, the
optimization of encryption processing by overwrapping the
encryption cycle is efficient.

6 Related Work

Some studies present performance evaluation of iSCSI.
Sarkar et al.[5] have evaluated iSCSI software imple-

mentations and hardware implementations such as TCP Of-
fload Engine (TOE) and Host Bus Adapter (HBA). They
presented while such hardware is effective for reducing
CPU utilization , it does not achieve better performance than
that of the software implementation.

Radkov et al.[6] have investigated performance evalua-
tion of sequential access in iSCSI and NFS and they pre-

sented that iSCSI outperforms NFS in terms of throughput
and CPU utilization.

In a security-related work, Tang et al.[7] have compared
IPsec and SSL security schemes using iSCSI. They men-
tioned that SSL outperforms IPsec in a large block size al-
though a throughput of IPsec is higher than SSL in small
block size.

Many papers about iSCSI performance evaluation are
presented until now. However, security techniques such as
an encryption for improving performance using iSCSI are
not discussed.

7 Conclusion

In this paper, for the realization of secure storage access
on iSCSI networks, we implemented the middleware system
of an encryption in the upper-layer, instead of using IPsec
encryption that leads to the performance degradation. We
simulate the optimization of encryption processing by using
parallel processes and evaluate our middleware system in a
long-latency network experimentally. Moreover, we visual-
ize a behavior of TCP packet transfer and analyze the exper-
imental results in our system by modeling the throughput.
As a result, our proposal, optimization of encryption pro-
cessing in the upper-layer, is more efficient than the method
using IPsec.

As a part of future work, we will complete the imple-
mentation by building the optimization function in the mid-
dleware.

References

[1] iSCSI Draft,
http://www.ietf.org/rfc/rfc3720.txt.

[2] Kamisaka, K., Yamaguchi, S. and Oguchi, M.: Performance Evalua-
tion of iSCSI System Optimized for Encryption Processing in the Up-
per Layer, Proc. the International Special Workshop on Databases For
Next Generation Researchers (SWOD2005) in conjunction with IEEE
International Conference on Data Engineering (ICDE2005), pp. 204–
207 (2005).

[3] InterOperability Lab
in the University of New Hampshire,
http://www.iol.unh.edu/.

[4] FreeS/WAN Project,
http://www.freeswan.org/.

[5] Sarkar, P., Uttamchandani, S. and Voruganti, K.: Storage over IP:
When Does Hardware Support help?, Proc. FAST 2003, USENIX Con-
ference on File and Storage Technologies, pp. 231–244 (2003).

[6] Radkov, P., Yin, L., Goyal, P., Sarkar, P. and Shenoy, P.: Performance
Comparison of NFS and iSCSI for IP-Networked Storage, Proc. FAST
2002, USENIX Conference on File and Storage Technologies, pp.
101–114 (2004).

[7] Tang, S.-Y., Lu, Y.-P. and Du, D. H. C.: Performance Study of
Software-Based iSCSI Security, Proc. First International IEEE Secu-
rity in Storage Workshop, pp. 70–79 (2002).

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.283 790.866]
>> setpagedevice

