
Performance Evaluation of iSCSI System Optimized
for Encryption Processing in the Upper Layer

Kikuko Kamisaka�, Saneyasu Yamaguchi�, Masato Oguchi�

� Graduate School of Humanities and Sciences
Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku, Tokyo, Japan

� Institute of Industrial Science
The University of Tokyo

4-6-1, Komaba, Meguro-ku, Tokyo, Japan

Abstruct
iSCSI protocol, used in building IP-based storage networks,
is becoming more important because it realizes consolidation
of storage at low cost. Security is a critical issue for the
iSCSI protocol, on which remote storage is accessed over the
IP networks. iSCSI can employ IPsec that offers a function
of strong encryption. However, IPsec encryption processing
degrades the performance of storage access and increases
the CPU load of the server.

In this paper, to perform secure storage access on iSCSI
networks, we propose the storage access method of encrypt-
ing in the upper layer and its optimization, instead of using
IPsec encryption that leads to the performance degradation.
We implemented our proposed system, and experimentally
evaluated our system accessed with multi process for sim-
ulating optimization of encryption pre-processing. As a re-
sult, our proposal, optimizing of encryption pre-processing
is more efficient than the method using IPsec.

1 Introduction

Through the spread of a broadband network, large-volume
multimedia contents are transferred on the network and pro-
cessed on a server machine in recent years. With a huge
volume of data and management cost, Storage Area Network
(SAN) is attracting a growing interest. SAN is a high-speed
network used to connect servers to storages, thus it allows the
storage to be consolidated and managed in a centralized man-
ner. With the advent of broadband LAN technologies such as
Gigabit Ethernet, IP-SAN becomes common gradually. IP-
SAN technology uses TCP/IP networks, thus it makes ad-
ministration easy and keeps management costs low, and pro-
vides seamless integration with existing IP networks.

Internet SCSI (iSCSI) protocol, ratified by the IETF in
February 2003, is expected to become a dominant IP-SAN
protocol in the near future. In iSCSI, a SCSI command is
encapsulated into TCP/IP packets and transferred between a
server(initiator) and a storage(target) via IP networks. iSCSI
protocol stack has a complex hierarchical structure, which is
SCSI over iSCSI over TCP/IP over Ethernet.

In iSCSI, one of the key issues is a security measure to
access storage via IP networks. One of the benefits of us-
ing iSCSI is that IPsec is supported. IPsec offers encryption

and authentication functions of IP packets. However, IPsec
executes the encryption processing in a lower-level, IP layer,
and it does nothing but encrypts data segments sequentially,
which is passed from an upper layer. Hence IPsec cannot en-
crypt data effectively. Since there is a trade-off between se-
curity and performance, iSCSI communications are required
to execute encryption effectively.

In this paper, for realizing secure storage access using
iSCSI, we propose an encryption scheme in which trans-
ferred data is encrypted in a upper layer instead of the IPsec
layer to improve performance, and implement our proposed
system. It allows executing pre-processing of encryption, in
which a next data segment is encrypted while one data seg-
ment is transmitted. Moreover, our proposed system enables
to execute flexible processing in the upper layer.

We evaluate the performance of sequential storage ac-
cess on iSCSI networks in our system. In this experiment,
for confirming the effectiveness of encryption pre-processing
in the upper layer, we evaluated iSCSI storage access using
multi process. In these results, a throughput and CPU load
for multi process are improved, as we verify the effectiveness
of our proposed method.

2 Issues of Applying IPsec on iSCSI Networks

iSCSI can use IPsec, which offers strong encryption for a se-
cure access to TCP/IP based storage. IPsec offers encryption
and authentication functions of IP packets in the IP layer. It
commonly employs safe and secure symmetric-key cryptog-
raphy algorithm, Triple Data Encryption Standard (3DES).

However, storage access using iSCSI requires sending
and receiving large volumes of data. Since 3DES encryp-
tion processing needs a large amount of calculations, it de-
grades the performance of communication and burdens the
CPU with a heavy load.

We have experimentally measured the throughput and
the CPU utilization of iSCSI sequential read access using
IPsec[1]. As a result, in the case of using IPsec the through-
put degrades compared with the case of unencrypted trans-
mission and the CPU utilization is saturated. We have also
analyzed the experimental result, and verified that because
IPsec encrypts in the IP layer located on a lower-level, it
does not effectively execute encryption processing. Since
the IPsec is located on the lower-level layer, it only performs

File System

IP + IPsec
Ethernet Driver

TCP

Ethernet

iSCSI Driver
SCSI Driver

Block/Char device
File System

IP + IPsec
Ethernet Driver

TCP

Ethernet

iSCSI Driver
SCSI Driver

Block/Char device
SCSI Driver

Ethernet Driver
IP + IPsec

Ethernet

TCP
iSCSI Driver
SCSI Driver

Ethernet Driver
IP + IPsec

Ethernet

TCP
iSCSI Driver

Initiator (Server) Target (Storage)

Application

disk

IP NetworkIP Network

user space

kernel space kernel space

Encryption/
Decryption

Encryption/
Decryption

Figure 1. iSCSI Storage Access using IPsec

Middleware
File System

IP
Ethernet Driver

TCP

Ethernet

iSCSI Driver
SCSI Driver

Block/Char device

Middleware
File System

IP
Ethernet Driver

TCP

Ethernet

iSCSI Driver
SCSI Driver

Block/Char device Middleware

Ethernet Driver
IP

Ethernet

TCP
iSCSI Driver
SCSI driver

Middleware

Ethernet Driver
IP

Ethernet

TCP
iSCSI Driver
SCSI driver

Initiator (Server) Target (Storage)

Encryption/
Decryption

Application

Encryption/
Decryption

disk

IP NetworkIP Network

user space

kernel space kernel space

Figure 2. iSCSI Storage Access using Our Proposed System

the data encryption and the IPsec header processing sequen-
tially for small data segments which is passed from the up-
per layer. In fact, data read from the target’s disk is passed
to the TCP layer, and those data segments are fragmented
into Maximum Segment Size (MSS) in the TCP layer. The
IPsec encrypts fragmented data segments and processes the
IPsec header for them sequentially. Therefore, this is iden-
tified as the cause of overhead and thus it causes the perfor-
mance degradation.

3 Proposal of iSCSI Storage Access Opti-
mized for Encryption Processing

When IPsec is used on iSCSI communications, it is difficult
to encrypt data segments effectively, because IPsec encrypts
data segments that is fragmented into a smaller size in the IP
layer.

We propose an encryption scheme implemented as mid-
dleware in the upper layer than IP layer to access stor-
age on IP-SAN securely, instead of an IPsec encryption
scheme[2][3][4]. Figure 1 shows a storage access method
in the case of encryption using IPsec on iSCSI networks, and
Figure 2 shows a storage access method using our proposed
system that uses the encryption scheme in the upper layer.

In the access method using IPsec (Figure 1), data seg-
ments stored in the target’s disk is passed from the upper
layer to the IP layer, and they are sequentially encrypted and
decrypted in the IPsec layer after fragmented into a small
size. In this way, in the case of using IPsec, since the encryp-
tion is executed only serially in the lower layer, it is difficult
to execute encryption flexibly such that the next data segment

DataData

Encry-
ption

Decry-
ption

Read
Command

Read
Command

Initiator

Target

DataData

Encry-
ption

Decry-
ption

Read
Command

Read
Command DataData

Encry-
ption

Decry-
ption

Read
Command

Read
Command

1 Cycle 1 Cycle 1 Cycle

Figure 3. iSCSI Cycle using IPsec

DataData

Encryption

Decryption
Read

Command
Read

Command

Initiator

Target

Waiting time for
communications

Read
Command
Read
Command

Encryption

DataData

1 Cycle

Decryption

1 Cycle

Waiting time for
communications

Time

Figure 4. Encryption in the Upper Layer

Read
Command

Read
Command

Initiator

Target Encryption

DataData

Decryption

DataData

Encryption

Read
Command

Read
Command

1 Cycle

Decryption

1 Cycle

Time

Figure 5. Optimization of Encryption Pre-processing

is encrypted while transferring cipher text to the initiator.

In contrast, our proposed scheme (Figure 2) that uses
the encryption in the upper layer enables to deal with data
segments in a large size efficiently. Moreover, our scheme
can greatly reduce a fragmentation overhead of IPsec header
addition.

Figure 3 shows iSCSI cycle when IPsec is used.
Because IPsec encrypts data segments fragmented into a
smaller size, its encryption processing is inefficient.

On the contrary, figure 4 shows iSCSI cycle when data
segments are encrypted in the upper layer in our middleware.
Since our middleware enables to encrypt data segments by
the tally, it greatly reduces fragmentation overhead.

In addition, figure 5 shows iSCSI cycle when a function
of optimizing of encryption pre-processing is added to our
middleware. In fact, by adding the function to our system,
it can encrypts and decrypts the next data segments during
waiting time for communications by overwrapping the iSCSI
encryption cycle (Figure 5). As encryption time might be
hidden in the waiting time of data transmission, the system
performance is assumed to improve. Our proposed system
that implements encryption optimization in the upper layer
enables to deal with processing of application, SCSI, TCP
flexibly.

In this paper, to evaluate availability of the encryption
optimization shown in figure 5, we issue multiple iSCSI read
commands by multi process, so as to simulate the encryption
optimization.

Table 1. Experimental system : Spec of Computers

OS initiator : Linux 2.4.18-3
target : Linux 2.4.18-3

CPU Intel Xeon 2.4GHz
Main Memory 512MB DDR SDRAM
HDD 36GB SCSI HD
NIC Intel PRO/1000XT

Server Adapter on PCI-X
(64bit, 100MHz)

Table 2. Experimental system : iSCSI implementation

iSCSI UNH-iSCSI Initiator and
Target for Linux
ver. 1. 5. 3

4 Evaluation of Our Proposed System using
multi process

In this paper, we evaluate iSCSI sequential read access to
the target’s raw device using our system. In this experiment,
we implemented the encryption and decryption processing as
middleware based on our proposal. This is implemented as a
library in an user space in the initiator and as a kernel mod-
ule in the target. In the target of our system, we implemented
an encryption and decryption proprietary program based on
3DES encryption algorithm. Although our implemented al-
gorithm is equal to that of IPsec, there are some differences
between our 3DES implementation code and that of IPsec.

To evaluate the effectiveness of the optimization of en-
cryption pre-processing that begins to encrypt the next data
before one iSCSI encryption cycle ends (Figure 5). Because
we did not implement the pre-processing function on SCSI
level, we perform an experiment with multi process so that
we can issue multiple iSCSI read command. In the target,
the application in the initiator issues up to 5 iSCSI read com-
mands. They access data segments stored in different phys-
ical address of target’s disk, encrypt in continuity, transfer
through a TCP/IP connection, and decrypt in the initiator. In
fact, in this experiment, we simulate and evaluate the func-
tion of the encryption optimized for pre-processing.

4.1 Experimental Setup

The experimental system consists of the server (initiator)
and the storage (target) connected with the Gigabit Ether-
net. iSCSI reference implementation offered from the Uni-
versity of New Hampshire InterOperability Laboratory was
used[5][6]. Table 1 and 2 show the experimental environ-
ment.

4.2 Result and Consideration of Experiments

Figure 6 shows throughput of iSCSI sequential read access
when multi process is employed. When 1 process is issued,
throughput stays unchanged against difference of a block

0

10

20

30

40

50

60

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Block Size [KB]

Th
ro

ug
hp

ut
 [K

B
/s

ec
]

1 Process 2 Process 3 Process
4 Process 5 Process

Figure 6. Throughput of Our Experiments with Multi Pro-
cess

Table 3. Average Throughput Improvement Rate

Process 1 2 3 4 5
Improvement rate 1.000 1.465 1.722 1.812 1.864

size. Table 3 shows average throughput improvement rate
with multi process when a block size is changed from 4KB to
256KB. The throughput improvement rate goes up to about
1.5 in 2 processes, about 1.7 in 3 processes. Even if the num-
ber of processes is further increased, throughput stays un-
changed. This is due to a limit of CPU performance.

In this experiment, since encryption processing time in
the kernel module is much longer than communication time,
performance improvement is modest at best. However, we
assume that optimization of encryption pre-processing based
on our proposed method further improve performance of
iSCSI storage access in a long-latency environment and in
high-performance CPU environment.

Figure 7 shows CPU utilization of iSCSI sequential
read access with multi process. The CPU utilization is mea-
sured every second by “iostat” at the initiator. It makes no
difference between the CPU utilization measured in the ini-
tiator and the target. It shows that as the number of process
increases, CPU utilization increases as well.

Table 4 shows an average of CPU utilization when the
block size is changed from 4KB to 256KB. The CPU utiliza-
tion is about 51% with 1 process, and it increases up to about
75% with 2 processes. With 5 processes, the CPU utiliza-
tion achieves to be about 94% and reaches the limit of CPU
performance.

5 Throughput Modeling

We analize throughput of iSCSI sequential read access as a
measure of performance evaluation of our proposed method.

1 cycle time means that Initiator issues SCSI Read
command, encrypts data segments, transferes to the tar-
get and they are decrypted in the target. The fol-
lowing equation is relational expression of 1 cycle time

0
10
20
30
40
50
60
70
80
90

100

4KB 8KB 16KB 32KB 64KB 128KB 256KB

Block Size [Byte]

C
PU

 U
til

iz
at

io
n

[%
]

1 Process
2 Process
3 Process
4 Process
5 Process

Figure 7. CPU Utilization of Our Experiments with Multi
ProcessiInitiatorj

Table 4. Average of CPU Utilization

Process 1 2 3 4 5
Averagei%j 51.241 74.623 87.597 91.760 94.166

(1CYCLE TIME)C data transfer time (TRANSFER)CRTT
(Round Trip Time)Cencryption time (ENC) and decryption
time (DEC).

��� ��� ���� � �������	
�����	�����

(1)
The data transfer time is represented as equation (2) us-

ing a transfer data size (DATA) and throughput of the lower
layer (SOCKET).

���	
��� �
����

����
(2)

When the block size is 256KB, throughput of the lower
layer measured experimentally is about 58.106MB/sec, the
data transfer time is 4.302msCRTT is 0.392ms and decryp-
tion throughput is 50.461KB/sec. Therefore, the throughput
is represented as equation (3) using block size (BLOCK).

THROUGHPUT=

����

��� �
�����

������
�

�����

��� �	
�

�����

�� �	

(3)

Consequently, calculated throughput is 25.219KB/sec
with block size of 256KB. Compared to the actual mea-
surement, 25.560KB/sec (Figure 6), it is demonstrated that
throughput modeling is almost correct.

On the contrary, As shown in Figure 5, throughput
modeling in the optimization in which the next data segment
is encrypted during waiting time of communications is rep-
resented as equation (4).

��������� �
����

��� �
�����

������
�

�����

��� �	

(4)

When the block size is 256KB, calculated through-
put is 50.414KB/sec. Compared to actual measurement,

44.641KB/sec in 2 processes (Figure 6), the calculated
throughput of the optimized model is relatively closeD Con-
sequently, in this experiment, our proposed method that opti-
mizes iSCSI encryption processing cycles by overwrapping
demonstrates its effectiveness.

Moreover, if we introduce a high performance CPU, we
have potential for further improvement of system’s through-
put in the case of a larger number of processes. In this ex-
periment, RTT and the data transfer time is almost negligible
compared to encryption time. However, in a high-latency en-
vironment, waiting time for communication becomes longer,
so that the ratio of performance improvement in our pro-
posed method increases, because the encryption optimization
is performed effectively.

6 Conclusion

In this paper, for performing a secure storage access on iSCSI
networks, we propose the storage access method of encrypt-
ing in the upper layer and optimizing encryption, instead of
using IPsec encryption that leads to the performance degra-
dation. We implemented our proposed system, and experi-
mentally evaluated our system with multi process. As a re-
sult, our proposal, optimization of encryption pre-processing
is more efficient than the method using IPsec.

As a part of future work, we will comprehensively eval-
uate the performance of our system in a high-latency envi-
ronment.

Acknowledgment

This project is partly supported by the Ministry of Educa-
tion, Culture, Sports, Science and Technology, under Grant
13224014 of Grant-in-Aid for Scientific Research on Priority
Areas.

References

[1] Yamaguchi, S., Oguchi, M. and Kitsuregawa, M.: iSCSI Analysis Sys-
tem and Performance Improvement of Sequential Access in a Long-
Latency Environment, IEICE Transaction on Information and Systems,
Vol. J87-D-I, No. 2, pp. 216–231 (2004).

[2] Kamisaka, K., Yamaguchi, S. and Oguchi, M.: A Proposal of Perfor-
mance Improvement in Secure Storage Access using IP-SAN, Informa-
tion Technology Letters, Vol. 3, No. LD-003, pp. 59–61 (2004).

[3] Kamisaka, K., Yamaguchi, S. and Oguchi, M.: A Proposal of System
Software in Secure Storage Access using iSCSI, IPSJ SIG Technical
Reports, 2004-OS-97, SWoPP2004, pp. 97–104 (2004).

[4] Kamisaka, K., Yamaguchi, S. and Oguchi, M.: Performance improve-
ment of an iSCSI-based secure storage access, the 16th IASTED Inter-
national Conference on Pararellel and Distributed Computing and Sys-
tems (PDCS 2004) (Gonzalez, T.(ed.)), IASTED, pp. 522–527 (2004).

[5] InterOperability Lab
in the University of New Hampshire,
http://www.iol.uhn.edu/consortiums/iscsi/.

[6] iSCSI Draft,
http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-20.txt.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.283 790.866]
>> setpagedevice

