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Abstract—Genome sequence search is useful, for example, in
clinical applications where a care provider needs to select a
treatment option for a patient based on the exact kind of cancer
the patient might have. Homomorphic encryption is a desirable
technology to be used for this application because it is non-
interactive. However, privacy-preserving genome sequence search
using homomorphic encryption has been a practical challenge
because of scalability issues driven by the depth of computa-
tions that need to be supported for privacy-preserving genome
sequence search. In this paper, we build off of earlier privacy-
preserving genome sequence search results to design, implement
and compare two approaches to a client-server style system for
privacy-preserving genome sequence search. There is a myriad of
options and design trade-offs associated with the application of
homomorphic encryption in this domain driven, for example, by
choices in data encoding, scheme selection, and even encryption
software library. We particularly focus on the use of the BGV and
BFV homomorphic encryption schemes provided by the HElib
and PALISADE open-source homomorphic encryption software
libraries. Our results show that using the BFV-based approach
in PALISADE provides optimal results for this application over
our sample data.

Index Terms—Homomorphic Encryption (HE), Genome Se-
quence, Secure Search, Privacy

I. Introduction

Ever since the Human Genome Project [1] and the 1000
Genomes Project [2] have begun publishing catalogues of
human variation and genotype data, genomic data analytics
have found increasingly practical and important use in various
fields, not only for medical use but also for a wider range
of application. Privacy is critical for analytics on personal
genomic data, whether in the area Genome-Wide Association
Studies (GWAS), personalized medicine, or more. Privacy
challenges associated with analytics on genomic data have
been exacerbated by recent innovations that made it much
less expensive to sequence genetic information, leading to dra-
matic increases in the availability of sequenced genomic data.
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Furthermore, it is difficult to manage genome data in secure
on-premise environments at hospitals or research institutes
because expensive specialized storage facilities and computers
are necessary to manage and analyze genomic data sets. The
above advances have led to an interest in the development
and application of privacy-preserving analysis techniques for
genomic data. However, because genomic data is potentially
voluminous, making scalability challenges are important when
analyzing genetic data, especially when needed to be done in
a privacy-preserving manner.

Of particular interest, genomic search applications look
for some specific sub-strings, thus driving the need for a
system that can conduct privacy-preserving string searches
on vast amounts of genome data. Generic cloud computing
environments are not feasible to address this need due to
security and privacy concerns engendered by multi-tenancy,
and the cloud may be managed by unknown and un-trusted
individuals. A simple solution to the cloud-based storage of
privacy-sensitive genomic information is to use encryption.
If the privacy-preserving genome search system is built with
common symmetric- or public-key encryption, the decryption
key would be passed to the cloud to enable analytics, thus
creating a privacy concern.

Only homomorphic encryption techniques enable non-
interactive computation on the data when it is encrypted.
Additive homomorphic encryption can also be used as an
encryption method, but it is considered that preventing genome
data leakage with additive homomorphic encryption is difficult
because we cannot conduct complex calculations with it [3].
Previous research into secure search methods on genomic
data has leveraged Fully Homomorphic Encryption (FHE)
to enable privacy-preserving genomic analysis. FHE supports
non-interactive computation on encrypted data. Hence, FHE
allows a client to upload a corpus of genomic data to a high-
performance off-premise computation environment and then
search on that genomic data without leaking its private infor-
mation to the computation host. However, search operations
are considered to be ”deep”, meaning they are not naively effi-
cient when running on homomorphically encrypted data. This
has led to recent interest in enabled practical encrypted search
operations on genomic data using homomorphic encryption
[4].



Prior efforts show secure search methods we build on that
use Fully Homomorphic Encryption (FHE) to protect privacy
[4]- [5]. In these methods FHE encrypted data is uploaded
to a cloud environment for privacy-preserving non-interactive
computation without decryption, meaning that decryption keys
are not uploaded to the cloud with the encrypted data. Despite
leveraging discrete data structure Positional-Burrows Wheeler
Transform (PBWT) [6] and optimizing the calculation proce-
dure, calculation costs on a server are still an issue in the
approaches we leverage because of the large FHE resource
requirements. Although there have been attempts to accelerate
these systems by introducing decentralized computing such as
in [7] as well as calculation optimization as in [4]- [5], the
calculation costs on the cloud are still too large to put into
practice.

In this paper, we implement the system in two designs
that are proposed by the previous work [4]- [5] with two
FHE schemes, BGV and BFV provided by HElib and PAL-
ISADE, and compare their performance in order to explore
design trade-offs. In Section II we introduce the motivating
application of privacy-preserving genome sequences search. In
Section III, we introduce relevant features of FHE techniques
and their prior support in FHE software libraries that we
use. In Section IV, we provide a broad overview of relevant
prior work. In Section V, we discuss designs trade-offs and
approaches that we build on and explore. In Section VI, we
discuss our implementation, and experimental settings and
show experimental results from deploying our techniques on
real-world data. In Section VII, we analyze the result of our
experimentation. In Section VIII, we conclude this research
and discuss future directions.

II. Genome Sequence Search Application
The goal of an application for the privacy-preserving

genome sequences search is for clients to query if there are
matches between a query string and the data stored in a
genome database stored on an off-site server [3]. Genomic
data are composed of sequences of 4 different kinds of
nucleotides – A, G, C, and T –, therefore, we can regard this
genome sequences search as a 4-kind character search [7]. A
representation of this operation is seen in Figure 1.

Fig. 1. Genome Sequences Search

We assume a security model of a privacy-preserving genome
search, where the outsourcing system is implemented in the
client-server style. A server holds a set of genome sequences
data aligned by each sample in a database. A representation
of this operation is seen in Figure 2.

Fig. 2. Application Overview

By arranging the genome sequence of each sample inside
the database in a row, it becomes possible to search every
sample in a specific position of the genome sequence of
each column. Clients send the inquiry to a server in order
to calculate the matches with the query and database. This
query includes not only the encrypted string that the client
wants to search the genome sequence for but also some other
parameters such as the multiple numbers of starting points of
the search for genome data strings (search positions). By des-
ignating multiple numbers of positions including dummy ones,
clients can hide the true one from the server. On receiving an
inquiry from a client, the server conducts match searching on
the data with FHE calculations, and then transmits the result
to the client. This result indicates that whether there are any
matches between the query string and genome sequences or
not.

III. Fully Homomorphic Encryption

As discussed in the introduction, we leverage Fully Ho-
momorphic Encryption (FHE) to provide privacy-preserving
genome sequences search. As discussed in prior work [7] the
primary property of FHE is that general computations can
be performed on encrypted data. Concretely for the modern
schemes (such as [8]), this means that we leverage Addi-
tive and Multiplicative homomorphisms on encrypted data
to translate general computations into circuits that can be
evaluated on encrypted data. As seen respectively in Formulas
(1) and (2) below, these homomorphisms are called the Addi-
tive Homomorphism (which supports addition over encrypted
data), and the Multiplicative Homomorphism (which supports
multiplication over encrypted data.)

Additive/Multiplicative Homomorphism� �
Encrypt(m) ⊕ Encrypt(n) = Encrypt(m + n) (1)
Encrypt(m) ⊗ Encrypt(n) = Encrypt(m × n) (2)� �

Fully Homomorphic Encryption (FHE) supports both of
the Additive and Multiplicative homomorphism properties. By
leveraging these properties users can support the evaluation
of polynomial circuits over ciphertexts analogous to how
they would support similar circuits evaluated on unencrypted
plaintext.



A. Characteristics

FHE was first proposed by Rivest et al. in 1987 [9], but
was not known to be feasible until a candidate scheme was
discovered by Gentry in 2009 [10]. This first scheme leverages
polynomial rings and ideal lattices, and the encrypted text
is constructed by encrypted data and random noise in order
to guarantee its difficulty to decrypt without the appropriate
secret key. This early scheme was computationally inefficient.
For example, the ciphertext of Gentry’s implementation would
be 1GB on encrypting 1bit data. There have been tremen-
dous recent strides in developing increasingly more efficient
schemes (such as BFV [8]) and their implementations (for
example, [11]). These recent schemes are also more expressive
in addition to being more efficient. For example, Lu et al. [12]
show a scheme that supports a comparison homomorphism in
addition to addition and multiplication homomorphisms.

There are still many large challenges with FHE. For ex-
ample, noise accumulates in ciphertexts when computations
are performed on them. As this noise grows, the ciphertexts
eventually can’t be decrypted if too many computations are
performed. This results in incorrect decryption when the
noise amount exceeds its noise threshold. The random noise
in ciphertexts grow additively with additive operations and
multiplicatively with every multiplication operation. This noise
growth would normally limit the size of computations that
could be performed with FHE. However, there is a special
method called bootstrapping, which reduces the noise embed-
ded in a ciphertext, with the drawback that the bootstrapping
operations are extremely computationally intensive.

Note that many practical applications of FHE schemes
use a limited version of FHE without bootstrapping. The
”reduced” version of FHE is called Somewhat Homomorphic
Encryption (SHE or SwHE) [13]. This is the ability to conduct
some simple calculations that can be derived with one-time
multiplication and multiple times addition, such as the inner
product of the vector, distribution, and correlation.

B. Software Libraries

With the tremendous advances in the basic FHE schemes,
there have been corresponding advances in the implementation
of these constructions in open-source libraries available for
broad use.

HElib [14] is one of the first and one of the more well
known such libraries that support lattice-based Homomorphic
Encryption in C++. This library supports Brakerski-Gentry-
Vaikuntanathan (BGV) scheme [15], along with many opti-
mizations and a recent version of the library now supports the
CKKS scheme [16]. HElib currently supports bootstrapping.

PALISADE [11] is a more recent open-source software
library for general lattice cryptography that supports several
homomorphic encryption schemes: LTV [17], Stehle-Steinfeld
[18], BFV/BFV-rns [8] and BGV [15]. Contrary to HElib,
PALISADE does not yet support bootstrapping.

There are several other homomorphic encryption libraries
such as SEAL [19] and TFHE [20], but we focus on HElib
and PALISADE in this research.

IV. PreviousWork

A. PBWT-sec

Several previous attempts have been made to realize prac-
tical privacy-preserving string search for genome sequences.
PBWT-sec [3] is an efficient two-party prefix much-counting
protocol that combines additive homomorphic encryption and
an efficient data structure for much searching called Positional-
Burrows Wheeler Transform (PBWT) [6]. PBWT is a discrete
data structure that sorts genome data by column and is used
to search for a substring match for a set of aligned genome
sequences rapidly. The server of PBWT-sec has a genome
sequences database as PBWT, that is transformed from an
original aligned genome sequences database. In its searching
phase, the server access to a look-up vector that is derived
from PBWT recursively. This is named recursive oblivious
transfer (ROT) [6]. When the query string length is l, ROT
consists of l times vector-lookups, which needs l rounds of
communication between the client and the server. PBWT-sec
also devises the idea that the client passes multiple amounts
of search positions, which includes dummy ones, to a server
in order to preserve the privacy of clients with hiding the
positions that the client actually uses.

The C++ implementation of PBWT and PBWT-sec is
published on GitHub [21]- [22].

B. Genome Sequences Search with FHE

Although FHE engenders a much longer computation time
than that of additive homomorphic encryption, we can extend
the PBWT-sec approach to use computation methods that
search with wildcards and compute statistics based on the
search result by building genome sequences search with FHE.

There are two relevant prior attempts by Ishimaki et al. [4]-
[5]. First [4] proposes multi-round privacy-preserving genome
sequence searches with FHE on the basis of PBWT-sec
[3]. This approach replaces additive homomorphic encryption
methods in PBWT-sec with fully homomorphic methods and
also introduces the packing technique by Smart et al. [23]. The
other [5] propose an efficient approach for one-round search
with FHE by introducing bootstrapping and reducing the
runtime of the system by optimizing the calculation procedure.
These two work use HElib [14] and its BGV implementation
as a software library for FHE calculations. The detail of the
system design that is proposed by each work is discussed in
Sec. V.

There has also been prior work to accelerate these FHE-
based PBWT systems with parallel processing [7]. It is possi-
ble to realize the following three approaches as the method for
parallelizing the FHE-based PBWT computation: decentraliz-
ing each individual data point, decentralizing each independent
calculation, or decentralizing the independent algorithm. The
first one, where each worker has an independent database, is
the simplest to implement and also leverages techniques that
use the results of previous calculations repeatedly. Thus, this
prior work adopts the division of the database on the server
side as a distribution method.



V. Design and Approach

A. Design and Tradeoffs

We build our approach to support the needed depth of
computation and the depth limitations of FHE to avoid boot-
strapping for a practical approach to private genome sequence
search and thus limit the depth of computations to keep the
noise in ciphertexts less than noise threshold for decryption.
We thus build from the two systems proposed in [4] and [5].
We start from the design proposed by [4] shown in Fig. 3.

Fig. 3. Application Design 1

(1) The client encrypts one character of the query string and
then passes the resulting ciphertext to the server with
other parameters.

(2) The server then performs FHE computations and then
returns the result to the client.

(3) The client decrypts the intermediate result.
(4) The client encrypts the next character of the query using

the result and sends it to the server.
(5) (2)-(4) are repeated as many times as the length of the

query.

In this design, the server operates over a single character at a
time. This reduces the depth of computation on the server and
enables reduced noise to remove the need for bootstrapping.
However, computation costs on the clients and communication
costs increase as the length of the query increases. Since
each communication involves large data transfer, this design
is inappropriate for the clients with limited communication re-
sources and requires that the clients both be available and have
appropriate computation resources for repeated encryption and
decryption.

The other design built off of from [5] is shown in Fig. 4.

Fig. 4. Application Design 2

(1) The client encrypts the whole query string and then
passes the encrypted query string with supporting pa-
rameters to the server.

(2) The server performs FHE computations and then trans-
mits the encrypted result to the client.

(3) The client gains a result by decrypting the received data.

The server in Design 2 supports the whole string search.
This Design 2 is more appropriate for the client with limited
computation power, as compared to Design 1. However, The
data size of ciphertexts and also FHE calculation costs on the
server of Design 2 are much greater than that of Design 1.

There are two general approaches to support the large com-
putation depth needed in Design 2. First, we can set sufficiently
large parameters to ensure correct decryption within a limited
(but large) number of operations. Alternatively, we can reduce
the noise by bootstrapping. Using the parameters for the
larger number of operations deteriorates the performance of all
the arithmetic operations, while each bootstrapping operation
causes expensive overhead.

B. Implementation

Prior experimentation focused on the use of the BGV
implementation in HElib, each in isolation. We implemented
these designs in PALISADE and HElib, respectively, and
perform experimental apples-to-apples comparisons on them
for variations in configuration. As such, we implement these
two designs for the privacy-preserving genome sequences
search system with two FHE schemes, BGV provided by
HElib [14] and BFV provided by PALISADE [11]. The
Design 2 implementation with BFV is implemented without
bootstrapping since PALISADE does not support it, while that
with BGV is implemented with bootstrapping as proposed in
the previous work [5].

VI. Experimentation

A. Problem settings

The genomic data used for this experiment are single-
nucleotide polymorphism (SNP) [24] sequences from the
1,000 Genomes Project [2]. This data provide the represen-
tation of where variations from a reference genome are likely
to appear, without showing entire genome sequences. In our
experimental setting, the number of genomic data samples is
512 and the number of characters per sample is 10,000.

We experimented with query strings from 5 to 25. Also,
clients designate 5 search positions which include dummy ones
in order to improve security as mentioned in Sec. II.

B. System overview

We implemented the privacy-preserving genome sequences
search system in two designs and two schemes discussed in
Sec. V in C++. Both systems adopt the Chinese Reminder
Theorem (CRT) packing technique by Smart et al. [23].
Experiments were conducted on the machine that has the
specification shown in Table I, and temporary parameters used
for these experiments are summarized in Table II.



TABLE I
Experimental Environment

OS CentOS 6.9

Server CPU Intel®Xeon®Processor E5-2643 v3 (3.4GHz)
6 Cores × 2 Sockets

Main Memory 512GB

SSD 80GB

HDD 2TB

TABLE II
Parameters for These Experiments

Scheme Design Parameter

BGV Design 1 level L = 23

Design 2 level L = 8

BFV Design 1 numAdds A = 10

Design 2 numAdds A = 50

C. Experimentation Results

We ran each experiment three times and calculated the
average of each execution time.

Fig. 5 and Fig. 6 show each graph of the average execution
time of the main calculation on the server of Design 1 and
Design 2 shown in Fig. 3 and Fig. 4, based on the length
of the query. Fig. 7 shows the average execution time of
Design 2 with BGV provided by HElib in detail, classified
by each execution time for bootstrapping, other calculations,
and initialization. Table III shows the calculation time of
bootstrapping as the percentage of the whole main calculation
time.

Fig. 5. Average execution time of the main calculation on the server of design
1 by the length of query

Fig. 6. Average execution time of the main calculation on the server of design
2 by the length of query

Fig. 7. Average execution time on the server of design 2 with BGV by the
length of query

VII. Analysis of Experimental Results

A. Scheme

First, we compare two scheme implementations: BGV by
HElib and BFV by PALISADE. Fig. 5 shows two things; BFV
by PALISADE is faster than BGV by HElib for Design 1, and
the gap between the execution time with PALISADE and that
of HElib widens as the length of query increases for both
design. This means BFV by PALISADE supports improved
performance for each arithmetic operations included in every
loop of processing than BGV by HElib does. Fig. 6 shows
similar results as in Fig. 5, but with a larger difference in
execution time between that of BFV in PALISADE and that
of BGV in HElib for Design 2 than that in Design 1. We
believe this is the case because the execution time of the main
calculation on the server of Design 2 with BGV increases
rapidly.



TABLE III
The ratio of the calculation time of bootstrapping
to the execution time of whole main calculation

The length of query The ratio of the calculation
time of bootstrapping

5 0.16698

10 0.18987

15 0.19698

20 0.20099

25 0.20312

B. Bootstrap

Second, we look at the result shown in Fig. 6 into more
detail. Fig. 7 and Table III focus on the details of the execution
time of the design 2 with BGV. They show that the calculation
time of bootstrapping accounts for a certain percentage of the
whole main calculation time, and it grows as the length of
query increases.

As mentioned in Sec. V-A, it is required to set the sufficient
parameter that allows the larger number of operations without
bootstrapping or to reset the noise in ciphertexts with boot-
strapping in order to avoid the incorrect decryption because of
the random noise in ciphertexts and its threshold. While using
the parameters for the larger number of operations makes the
performance of all the arithmetic operations worse, we can
consider that the overhead caused by bootstrapping is more
expensive than that caused by using the parameters for the
larger number of operations as shown in Fig. 6.

C. Practicality

The execution time on the server of Design 1 with PAL-
ISADE is around 80 seconds when the length of the query
is 25. Given that string search is generally a batch operation,
this runtime would be considered acceptable time for practical
use. Contrary to the execution time on the server of Design
1 shown in Fig. 5, that of Design 2 with BFV provided by
PALISADE is over 500 seconds even when the query length
is 5 according to Fig. 6. Design 2 runtime increase to around
2,600 seconds when the length of the query is 25. To put this
into practical use, further acceleration would be needed.

VIII. Conclusion and Discussion

In this paper, we implemented and compared two de-
signs for the client-server style system for privacy-preserving
genome sequences search with two homomorphic encryption
schemes, BGV provided by HELib and BFV provided by
PALISADE, on the basis of prior work. Our results show that
using the BFV-based approach in PALISADE provides optimal
results for both designs of this application over our sample
data. Though BFV-based approach shows better performance
in this research, the parameters used for this experiment are
not well-tuned. We have to consider which kind of parameters
we should use and what value is appropriate for the system,
and adjust the parameters in accord with the length of the
query. It is necessary to compare BGV-based approach and

BFV-based approach without bootstrapping as regards design
2 as well. As future work, we also plan to compare transfer
size as well as execution time.
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