
A Study of a Scalable
Distributed Stream Processing Infrastructure

Using Ray and Apache Kafka
Kasumi Kato∗, Atsuko Takefusa†, Hidemoto Nakada‡ and Masato Oguchi∗

∗Ochanomizu University †National Institute of Informatics
‡National Institute of Advanced Industrial Science and Technology (AIST)

I. INTRODUCTION
The spread of various sensors and the development of cloud

computing technologies enable the accumulation and use of
many live logs in ordinary homes. In addition, deep learning
technologies have been widely used for image and speech
recognition processing. However, a key issue for deep learning
is heavy processing loads. To operate a service that utilizes
sensor data, those data are transmitted from sensors in ordinary
homes to a cloud and analyzed in the cloud. However, services
that involve moving image analysis require large amounts of
data to be transferred continuously and high computing power
for the analysis; hence, it is difficult to process them in real
time in the cloud using a conventional stream data processing
framework. First, we perform preliminary experiments using
Apache Spark [3] (hereinafter called Spark), which is a
representative cluster computing platform that is designed to
be fast and versatile, and Ray [4], which is a distributed ex-
ecution framework. We investigate the characteristics of their
distributed recognition processing and demonstrate that Ray
enables scalable distributed processing. Next, We implement a
prototype system of the proposed distributed stream processing
infrastructure using Ray and Apache Kafka [1] (hereinafter
called Kafka), which is a distributed messaging system, and
demonstrate its performance.

II. DISTRIBUTED PROCESSING EFFICIENCIES
IN SPARK AND RAY

In this paper, as preliminary experiments, to investigate
the distributed processing efficiency of Spark and Ray, we
construct clusters of Spark and Ray and aim at high efficiency
of image identification processing using Chainer [5]. In the
experiments, MNIST [6] is used as a data set. For each case
of Spark and Ray, we measure the time that it takes for images
to be evaluated by each worker after execution of the program
and for the result to be returned to the master. We prepare 1000
MNIST data files, each of size 7.5 MB, for the experiments.
Table 1 shows the performance of the computer used in the
experiments. Nodes with the same performance are used for
the master and all workers. In addition, each node is connected
by a 1 Gbps network as shown in Fig. 1.

A. The distributed processing efficiency in Spark
Fig. 2 shows master/worker processing in the case of Spark.

The round rectangle drawn by a solid line represents the entire
Spark cluster and the dotted rectangle represents the physical

TABLE I
PERFORMANCE OF THE COMPUTER THAT WAS USED IN THE EXPERIMENT

OS Ubuntu 16.04LTS

CPU Intel(R) Xeon(R) CPU W5590 @3.33 GHz
4 core×2 sockets(8 core)

GPU NVIDIA GeForce GTX 980
Memory 48 Gbyte

Fig. 1. Experimental environment.

node. Among the physical nodes, a node that is used as a
master is represented by a red dotted line and a node that
is used as a worker is represented by a blue dotted line.
Distributed processing in Spark is performed as follows: (1)
Execute the Python program on the master. (2) Make Spark
read the MNIST and create the RDD. (3) Pass the created RDD
to the worker. (4) Identify MNIST using Chainer in workers.
Each node is connected in Spark Standalone Mode.

The average value of 10 measurements, when the number
of nodes is changed from 1 to 5 and the number of partitions
is changed from 8 to 48 in 8 increments, are shown in Fig. 3.
In Fig. 3, the horizontal axis is the number of nodes and the
vertical axis indicates elapsed time; each color shows different
experimental results when the number of partitions is set from
8 to 48. According to Fig. 3, when the number of nodes is 5,
the processing time is shortened by approximately 40 seconds
compared to when the number of nodes is 1. However, the
results for 4 and 5 nodes were almost the same. In terms of the
number of partitions, the results differed substantially between
8 and 16 and above; however, no significant difference was
observed for 16 or more partitions.

To conduct a detailed behavior survey, the processing times
for each task are measured and shown in Fig. 4. Measurement
results are obtained when the number of nodes is 5 and the



Fig. 2. Master/Worker processing using Spark and Chainer.

Fig. 3. Processing times of distributed processing by Spark.

number of partitions is 40. In Fig. 4, the horizontal axis
indicates elapsed time and the vertical axis is the node number.
The start time and the end time are measured for each task and
the processing times of each task are drawn one by one with
arrows for each node. A group of arrows that point diagonally
upward and to the right of the time axis indicate a single
partition and it takes approximately 2.5 seconds to process
the first task of the partition and approximately 0.3 seconds
to process subsequent tasks. It takes longer to process the
first task because it calls Chainer and the learned model. It
is thought that task processing is faster for the second and
subsequent calls because these calls are easier than the first
task with Chainer library loading. In Fig. 4, processing is
intimated for each node and 8 tasks are processed in parallel
since the number of the machine cores is 8. However, the
number of tasks in each partition does not become uniform;
hence, the partitions in the positive direction of the time
axis are scattered. The presence of such partitions suggests
that the parallel processing efficiency degrades as the overall
processing time increases.

B. The distributed processing efficiency in Ray
Fig. 5 shows master / worker processing in the case of Ray.

The round rectangle drawn by a solid line represents the entire
Ray cluster and the dotted rectangles represent the physical
nodes. Among the physical nodes, a node that is used as a
master is represented as a red dotted line and a node that is
used as a worker is represented as a blue dotted line.

Distributed processing in Ray is performed as follows: (1)
When a Python program is executed on the master, (2) the
Ray driver in the master node places the data in the object

Fig. 4. Processing times of each task in the Spark environment.

Fig. 5. Master / Worker processing using Ray and Chainer.

store of its own node and contacts the local scheduler. (3) The
local scheduler communicates to the global scheduler. (4) The
global scheduler sends instructions to local schedulers of each
node. (5) Ray workers evaluate MNIST using Chainer based
on data that are copied via object storage and shared memory
deployed over Object Stores in the Ray cluster nodes.

As with Spark, we measure the execution times of Ray
on 1000 tasks as we change the number of nodes from 1
to 5. Since Ray does not have the concept of a partition as
Spark does, we distribute data to workers 1 to 5 in a round-
robin manner. We divide the processing time into three parts:
launching a Ray worker, reading data, and evaluating via a
remote function. The average values of 10 measurements is
shown in Fig. 6. The horizontal axis is the number of nodes
and the vertical axis indicates elapsed time. The graph is drawn
of each of the 3 parts: launching a Ray worker, reading data,
and identifying via a remote function. In Fig. 6, the processing
time that is taken to read the data is nearly constant over the
number of nodes; however, as the number of nodes increases,
the time to launch a Ray worker is increasing. In contrast,
the time that is required for the identification process via the
remote function decreases as the number of nodes increases;
it is faster than Spark.

We also measure the processing times for each task using
Ray. The result for 5 nodes is shown in Fig. 7. The horizontal
axis indicates elapsed time and the vertical axis is the node
number. The set of arrows that point to the right obliquely
upward are processed on the same node. In the Spark result
in Fig. 4, the arrows are not continuously plotted for each



Fig. 6. Processing times of distributed processing by Ray.

Fig. 7. Processing times of each task in the Ray environment.

core due to a partition-based scheduling; instead, tasks in Fig.
7 are being processed in parallel depending on the number
of machine cores since tasks are assigned to each worker in
a round-robin manner. In each node, it takes approximately
1.3 seconds to process the first task and approximately 0.35
seconds for subsequent tasks. In the case of Ray, task process-
ing in all nodes are started at the same time; as a result, the
image identification process is completed in approximately 10
seconds, which is faster than Spark.

III. DISTRIBUTED STREAM PROCESSING
INFRASTRUCTURE USING RAY AND KAFKA

We perform distributed stream processing using Kafka and
Ray. The experimental configuration is shown in Fig. 8. In
this experiment, Kafka transmits image data provided by
the ImageNet [8] to the Ray cluster and we investigate the
performance of distributed recognition processing using Keras
[7] and TensorFlow [2]. The round rectangles drawn by solid
lines represent the Ray cluster and the Kafka cluster and the
dotted rectangles represent the physical node. When Kafka
is started and a Python program is executed, image data are
transmitted from Producer to Broker. Upon receiving the data,
the Broker sends the data to the Consumers deployed in the
worker nodes in the Ray cluster and the Consumers identify
the image. The number of Producers is set to 1, the number of
Ray workers is varied among 1, 2, 4, 8, 12, and the batch size
is varied among 1, 5, 10, 20, 40. The experimental results are
shown in Fig. 9. The horizontal axis is the number of worker
nodes and the vertical axis is the image processing throughput;

Fig. 8. Distributed stream processing composition.

Fig. 9. Throughputs of batch-based distributed stream processing.

the graph is drawn for each batch size. Fig. 9 shows that the
throughputs are improved by approximately a factor of two
compared with batch sizes of 1 and 5, while the throughputs
of batch size 10, 20 and 40 are comparable. In addition, the
throughputs of all batch sizes are improved as the number of
workers increases. Thus, the experimental results show that
a scalable distributed stream processing infrastructure can be
constructed using Kafka and Ray.

ACKNOWLEDGMENTS

This paper is partially based on results that were obtained
from a project that was commissioned by the New Energy and
Industrial Technology Development Organization (NEDO),
JSPS KAKENHI Grant Number JP16K00177, and the open
collaborative research at National Institute of Informatics (NII)
Japan (FY2018).

REFERENCES
[1] “ Apache kafka,”https://kafka.apache.org/
[2] M. Abadi, et al., “ TensorFlow: Large-scale ma-

chine learning on heterogeneous systems,” 2015,
http://download.tensorflow.org/paper/whitepaper2015.pdf. pp. 1-
19. [Online]. Available: http://tensorflow.org/

[3] “ Apache Spark,”https://spark.apache.org/.
[4] P. Moritz, et al.,“ Ray: A Distributed Framework for Emerging AI

Applications,”2017. http://ray.readthedocs.io/en/latest/index.html
[5] S. Tokui, et al.,“Chainer: a next-generation open source framework for

deep learning,” in In Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Twenty-ninth Annual Conference on
Neural Information Processing Systems (NIPS), 2015, 6 pages.

[6] Y. Lecun, et al., “ The MNIST Database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/.

[7] “ Keras,”https://keras.io/
[8] J. Deng, et al.,“ ImageNet: A large-scale hierarchical image database.”

IEEE Conference on Computer Vision and Pattern Recognition, 2009.
http://www.image-net.org/


