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SUMMARY In Twitter-like services, countless messages are being
posted in real-time every second all around the world. Timely knowledge
about what kinds of information are diffusing in social media is quite im-
portant. For example, in emergency situations such as earthquakes, users
provide instant information on their situation through social media. The
collective intelligence of social media is useful as a means of information
detection complementary to conventional observation. We have developed
a system for monitoring and analyzing information diffusion data in real-
time by tracking retweeted tweets. A tweet retweeted by many users indi-
cates that they find the content interesting and impactful. Analysts who use
this system can find tweets retweeted by many users and identify the key
people who are retweeted frequently by many users or who have retweeted
tweets about particular topics. However, bursting situations occur when
thousands of social media messages are suddenly posted simultaneously,
and the lack of machine resources to handle such situations lowers the
system’s query performance. Since our system is designed to be used in-
teractively in real-time by many analysts, waiting more than one second
for a query results is simply not acceptable. To maintain an acceptable
query performance, we propose a capacity control method for filtering in-
coming tweets using extra attribute information from tweets themselves.
Conventionally, there is a trade-off between the query performance and the
accuracy of the analysis results. We show that the query performance is
improved by our proposed method and that our method is better than the
existing methods in terms of maintaining query accuracy.
key words: information diffusion, social media, in-memory database, mi-
croblogging, stream processing

1. Introduction

In Twitter-like services, countless messages are being
posted in real-time every second all around the world. In
emergency situations such as earthquakes, users provide in-
stant information on their situation through social media.
Speed is of the essence here. As another example, if a
user posts a tweet with content that maligns or criticizes a
company, that company will normally want to respond as
quickly as possible to protect its brand image and reputa-
tion. In contrast, if positive information is retweeted, the
marketing efforts of the company in question are positively
affected. Knowing what kinds of information are being
widely disseminated through social media is thus essential
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for a company to protect its corporate brand value. Timely
knowledge about what kinds of information are diffusing in
social media is therefore quite important.

Several research groups are studying trend and/or event
detection through real-time monitoring of the entire Twit-
ter stream. Mathioudakis and Koudas, for example, devel-
oped TwitterMonitor [1], a tool that identifies hot topics on
Twitter by detecting bursts of keywords that arrive at un-
usually high rates. TwitInfo [2] provides an event-tracking
interface that can collect, aggregate, and visualize tweets
about user-specified events as they unfold in the stream.
These approaches are based on the numbers of tweets con-
taining particular keywords. However, it is difficult to know
how these keywords are disseminated and become popular
in social media simply by detecting them. To address this,
we focus on a system for monitoring and analyzing infor-
mation diffusion data by tracking the retweeted tweets. A
tweet retweeted by many users indicates that they find the
content interesting and impactful. Sondy [3] provides net-
work analysis and a visualization tool, but it is not for real-
time use. We have developed a system for monitoring and
analyzing the diffusion data interactively against a real-time
tweet stream. Many users are interested in hot topics, so the
system should be able to handle bursting tweets in real-time.

On social media, tweets about particular topics are of-
ten posted by many users within a short time frame. When
this happens, our system must process thousands or tens of
thousands of tweets simultaneously, which can cause per-
formance degradation if there is a lack of memory or CPU
resources in the stream server. Since our system is designed
to be used interactively in real-time by many analysts, wait-
ing more than one second for results in one query is not
acceptable.

To maintain an acceptable query performance, we pro-
pose a capacity control method for filtering incoming tweets
using extra attribute information of the tweets themselves. A
tweet includes various pieces of information: the user who
posted the tweet, the number of followers, and so on. Hence,
we define a weight value representing the importance of a
tweet with such extra information. We assume that popular
tweets are important for analysis because they are impact-
ful. If the weight value of an incoming tweet is lower than a
specified threshold, the tweet is filtered out from the system.

Conventionally, there is a trade-off between query per-
formance and accuracy of analysis results. We show that
query performance is improved by our method and the
method is better than the existing methods in terms of main-
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taining query accuracy.
We make three contributions in this work.

• Our diffusion analysis system enables real-time analy-
sis of streaming social data to let users know how re-
shared messages are disseminated. We introduce typi-
cal query patterns for such analysis.
• Our system features capacity control of incoming mes-

sages to adjust for bursts by filtering less important
diffusion data using extra attribute information of the
messages.
• Query performance evaluation of our system using typ-

ical analysis scenarios with real bursting data from
Twitter shows that our capacity control method outper-
forms existing methods in terms of maintaining query
accuracy.

Section 2 of this paper describes the background and prob-
lem definition. Our diffusion analysis system is introduced
in Sect. 3. Section 4 provides typical data access patterns
for diffusion analysis. We introduce our capacity control
method in Sect. 5. Section 6 presents our experimental envi-
ronment and describes the evaluation. We discuss improve-
ments to our method in Sect. 7. We review related work in
Sect. 8 and conclude the paper in Sect. 9.

2. Background and Problem Definition

2.1 Performance Degradation When Bursting

One of the characteristics of social media is that thousands
of social media messages are suddenly posted simultane-
ously. Such bursting creates a strain of machine resource
and lower the query performance in analysis systems. Fig-
ure 1 shows an example of how tweets spread. Day 14 was
the election day of the House of Representatives in Japan,
2014. The x-axis shows time and the y-axis shows the num-
ber of retweets including specific political terms. We can
see that the number of tweets was bursting just after eight
o’clock that night. This was when a quick flash report of the
vote count was broadcasted, so many users tweeted about
the election result.

This type of situation tends to occur whenever a par-
ticular topic is bursting. (e.g., an election, the World Cup,
the Olympics, and disasters such as earthquakes). In these

Fig. 1 Example of bursting tweets.

cases, our system must process thousands or tens of thou-
sands of tweets simultaneously, which can create a strain of
memory or CPU resources in the stream server.

Figure 2 shows the response time of Queries 2 and 3
(details discussed in Sect. 3) and the CPU utilization of the
stream server (detailed configuration discussed in Sect. 5).
Query 2 is obtaining the rankings of retweet counts. Query
3 is obtaining the user rankings.

In the example in Fig. 2, after the vote counting, the re-
sponse time lengthened to over one second and then became
slower and slower. One cause of this was the lack of CPU
resources to handle queries with a large number of incoming
retweets.

2.2 Problem Definition

Since our analysis system is designed to be used interac-
tively in real-time by many analysts, waiting more than one
second for a query result is not acceptable. For example, a
particular response time is specified by means of a service
level agreements (SLA) in the cloud environment. In our
system, (1) it is important to guarantee a certain response
time in the form of an SLA.

As an existing solution, incoming tweets are filtered
randomly to keep the number of tweets per second under
control [4], [5]. Bosch et al. [6] provide a monitoring tool
that filters incoming messages with keywords. They cal-
culate a weight value for each search keyword on the ba-
sis of co-occurrences with an initial seed keyword. If the
weight value of a keyword is lower than a predefined thresh-
old value, that keyword is removed from the search keyword
list. However, it is unclear that such methods are effective
for our system, too.

In this work, we present our system for analyzing infor-
mation diffusion data by tracking retweeted tweets. A use-
ful query for our system involves not only obtaining retweet
ranking, but also obtaining data from a whole retweet net-
work. Such a retweet network can be used for analysis such
as clustering and visualizing the diffusion path. Therefore,
(2) it is important for our diffusion network analysis system
to maintain high accuracy of the query results.

Conventionally, there is a trade-off between query per-
formance and accuracy of analysis results. Our goal is to

Fig. 2 Query performance when bursting.
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maintain high accuracy of all query results as much as pos-
sible while honoring the SLA.

3. Real-Time Diffusion Analysis System

3.1 Framework of the Diffusion Analysis System

Our information diffusion data involves a collection of re-
shared messages. In this paper, we introduce our system
with Twitter as a use case. Figure 3 shows our system
operating as a real-time diffusion analysis system. The
framework consists of the stream server and the application
server. Incoming retweets are sequentially inserted into an
in-memory data store running on the stream server. The ap-
plication server provides various analysis modules for the
diffusion data. For example, the “Ranking” module creates
a ranking of retweet counts to detect the current hot tweets
or the ranking of influential users for a specified topic, and
the “Visualization” module displays a diffusion network for
a specified tweet. We can add other modules for diffusion
analysis, such as a profile analysis to detect users’ hobbies
or the locations of specified users. Each module retrieves
diffusion data from the stream server.

These servers can run in the cloud environment. The
stream server runs in one cloud instance and provides calcu-
lated results both in real-time and off-line. We can provide
multiple application server instances for analysts. For ex-
ample, one user might be focused on election topics for the
analysis, while another user might want to retrieve messages
related to a disaster topic.

To handle all the fresh diffusion data for each tweet
retweeted by users, we use an in-memory data store to col-
lect all of the diffusion data in the stream system. In stream
processing, a query is usually defined in advance and used
for a period of time with the incoming streaming data. In
contrast, for an in-memory data store, various queries can
be issued interactively against the stored data.

However, continuously storing all the diffusion data
for many days is impractical since memory resources are
limited. The stale data should be deleted or moved to a
disk-resident database. To determine the staleness, we esti-
mate retweet diffusion extinction for each tweet [7]–[9]. The
disk-resident database stores historical diffusion data for use
in offline data analysis. We focus on the real-time process-
ing in this paper.

There are various candidates for implementing the

Fig. 3 Diffusion analysis system.

in-memory data store, such as an in-memory database, a
key/value store, and a graph data base [10], [11]. In our
application, the primary scenarios involve finding popular
tweets and aggregating or sorting the users who retweeted
them in the data store. The in-memory database is best for
our purpose since it can handle complicated queries using
SQL.

3.2 Tables in the In-Memory Database

The in-memory database contains two tables: a RETWEET
table and an ORIGIN TWEET table, as shown in Fig. 4. The
RETWEET table stores retweeted messages. It has fields
for the tweet ID of a retweet (TweetID), the tweet ID of
the original tweet (RTID), the retweeted time (Time), the
user name of the source (Src) and destination (Dst), the
retweeted user’s language (Lang), and the location infor-
mation (Location). The value of Dst is the name of the
user who retweeted. The value of Src is the user who was
retweeted. The pair of Src and Dst in each row represents
an edge in the diffusion network. The ORIGIN TWEET ta-
ble contains a tweet ID (TweetID), the tweeted time (Time),
the name of the user who posted the tweet (User), the tweet
message (Msg), and the retweeted count (RTcount). We in-
crement the number of RTcount if we receive corresponding
retweeted messages. The RTID in the RETWEET table can
be joined with the TweetID in the ORIGIN TWEET table if
we want to obtain information of an original tweet.

4. Data Access Patterns

In this section, we describe typical data access patterns for
our diffusion analysis system.

[Obtain retweet diffusion network data for specified
tweets]
With this pattern, diffusion data are obtained to create the
diffusion network. We can then answer “How did the in-
formation flow among users?” This query pattern can be
interpreted using the following SQL example:

[Query 1]
SELECT Src, Dst
FROM RETWEET
WHERE RTID in (tweet IDs)

Figure 5 shows an example of the information diffu-

Fig. 4 Tables in the in-memory database.
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Fig. 5 Information diffusion network.

sion network of one tweet. The white node indicates the
user who posted the original tweet and the green nodes are
the users who retweeted it. The edges represent diffusion
routes. For example, if user @u2 retweets a tweet posted by
user @u1, an edge between user @u1 and user @u2 is cre-
ated. From that network, we can find out if there is any user
whose retweet was re-tweeted more times than the original
tweet. If that user’s name was @u3, user @u3 may have
many more readers than the original user, which means user
@u3 is the main influencer in the network.

If we input several tweet IDs (e.g., tweets including
a specified keyword) in the WHERE clause, we can create
more complicated diffusion network. The obtained network
can then be used for network analytics such as clustering
and frequent path detection.

[Obtain ranking results for specified tweets]
(1) Simple sort
Example: Find trending tweets
This query pattern is used to obtain the current rankings of
retweet counts. This SQL query returns the top hundred
most retweeted tweets:

[Query 2]
SELECT ∗
FROM ORIGIN TWEET
WHERE TweetID in (tweet IDs)
ORDER BY RTcount DESC
FETCH FIRST 100 ROWS ONLY

(2) Aggregation and sort
Example: Find influential users
This query pattern is used to obtain user rankings. We can
answer questions such as “Who is interested in this topic?”
and “Who is the main influencer for this topic?” by using
this pattern. The SQL query returns the top hundred users
who retweeted most often from among the specified tweets:

[Query 3]
SELECT Src, count(Src)
FROM RETWEET
WHERE RTID in (tweet ids)
GROUP BY Src
ORDER BY count(Src) DESC
FETCH FIRST 100 ROWS ONLY

When Src is specified in the GROUP-BY clause, Query 3
returns the most influential users. Another possible scenario
of this query pattern is obtaining the location ranking by
referring to the user location information in the RETWEET
table.

In these ways, we can obtain various types of informa-
tion from the in-memory database. The data access speed is
higher than that of a disk-resident database because the re-
sults are returned directly from memory. In particular, sim-
ple queries, such as fetching data using a primary key and
its associated values, are extremely fast. However, for some
complicated queries using sort, count, join, and subqueries,
the overall query performance can be worse than that of a
disk-resident database [12], [13]. For example, Queries 2
and 3 may be slow when data becomes large because they
use aggregation operations.

5. Capacity Control to Adjust for Bursts of Streaming
Data with Attribute-Based Filtering

Here, we consider capacity control to adjust for bursts of
streaming tweet data. As described in Sect. 2, our system
should be able to maintain an acceptable query performance
when bursting occurs.

As an existing solution [4], [5], incoming tweets are fil-
tered randomly to keep the number of tweets per second un-
der control. Morstatter et al. [5] reported that the number
of top hashtags of tweets filtered randomly was highly cor-
related with the non-filtered original result. The results are
considered to be reasonable, as popular tweets are mostly re-
tained because the number of such tweets is originally large.
The random sampling rate can be determined by monitoring
the CPU resources and response time periodically.

Another solution is filtering with keywords. Bosch et
al. [6] provide monitoring tool that filters incoming mes-
sages with keywords. They calculate weight value for each
search keyword on the basis of co-occurrences with the ini-
tial seed keyword. A threshold value is determined by users.
If the weight value of a keyword is lower than a predefined
threshold, that keyword is removed from the search keyword
list. As a result, the number of incoming tweets is reduced.

However, if we remove tweets randomly, the diffusion
network can become fragmented. Our objective is to ana-
lyze diffusion data created by retweets, so all of the diffu-
sion data relating to each tweet must be stored. When we
create a diffusion network as shown in Fig. 5, some edges
might be lost if incoming tweets are filtered at random, but
if we remove tweets with keyword-based filtering, popular
retweets including only minor keywords will be filtered out.

We propose another solution. A tweet includes various
pieces of information (the user who posted the tweet, the
number of followers, etc.), so in our system we define the
importance of a tweet on the basis of this extra information.
We assume that popular tweets are important for analysis
because they are impactful, so we want to avoid filtering out
any tweet (and its retweets) that has a large total retweet
count.

We calculate the importance of each tweet by

Weight(t) =

{
getUserInfo(tRTID), if t is retweet

getUserInfo(tID), otherwise

The weight of a tweet t represents the importance level



780
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

of the tweet. The getUserInfo method returns a weight value
related to the original user or, if t is retweeted, to the user
who posted the original tweet. If the weight value of an in-
coming tweet is lower than a specified threshold, the tweet
is filtered out from the system. For example, we refer to
the number of followers a user has as a weight value. Let
us assume a user posts a retweet (ID = 11). If the num-
ber of followers of the user who posted the original tweet
(ID = 1) is 500, Weight(ID11) = getUserInfo(ID1) = 500.
When the threshold is 1000, the retweet is filtered out and
not stored in the data store. This is based on the assumption
that if the number of followers is large, the user is likely to
be retweeted by many people because the user’s tweet would
catch many users’ attention.

The procedure of our proposed filtering method is as
follows.

However, removing too many tweets would affect the
accuracy of the analysis result (e.g., the retweet or user rank-
ing results). This is a trade-off between capacity control
and accuracy of analysis results. We can consider scaling
out with several servers for capacity control. For example,
incoming tweets are dispatched with the weight value, but
we have to handle distributed query processing. This would
negatively affect query performance.

Our proposed system is not restricted to Twitter ser-
vice: it can be applied not only to such microblogging ser-
vices, but also to real-time streaming data such as GPS and
sensor data, whose incoming rates vary depending on time,
location, and so on. For example, the GPS data of cars on
expressways is collected to determine the traffic situation
and control traffic volume. The amount of GPS data typi-
cally increases during holiday season and in particular time
slots. In these cases, we can filter out data by using location
information, as data from sparse areas may less important
for traffic control. The criteria of importance differ depend-
ing on the analysis scenario.

6. Experiments

6.1 Evaluation Methodology

We filter tweets on the basis of weight (as described in
Sect. 5) and evaluate the query performance to see how of-
ten important retweets are erroneously filtered out (ideally,
we want this to happen as little as possible). We set the SLA
for the query response time of Queries 1, 2, and 3 to one
second. The system keeps filtering out until it satisfyies the
SLA. The filtering rate will increase little by little just af-
ter the system detects failure of the SLA. We compare our
method with the two existing methods described in Sect. 5.

(a) Random filtering (Wei [4], Morstatter [5])
Filter tweets randomly to maintain the specified filtering
rates. We begin the rate from 10% and then increase it by
5% until the average query response time is less than one
second.
(b) Keyword filtering (Bosch [6])
Calculate weight value for every search keyword. The value
is calculated on the basis of co-occurrence with the initial
seed keyword. In this experiment, the initial seed keyword is
“election”. We use Jaccard similarity coefficient, a common
method for co-occurrence.
(c) Attribute filtering (proposed method)
Use number of followers to calculate the weight value. If
the number of followers is less than the threshold, the tweet
is filtered out.

We used Japanese tweets/retweets from 12/14 2014,
the House of Representatives election day in Japan, that in-
cluded political terms such as names of political parties and
official accounts of candidate users. The total number of
tweets/retweets was 616,148. Our test server used two Xeon
X5670 CPUs (2.93GHz, 6 cores) with 32 GB of RAM, and
Red Hat Linux 5.5. The H2 database [14] was used as the in-
memory mode. Indices were created for the TweetID field
in the ORIGIN TWEET table and for the RTID and SRC
fields in the RETWEET table to optimize Queries 2 and 3.

Our expectation going into the experiments was that
our proposed method would be able to deliver a query per-
formance at least as good as the comparative methods and
with better accuracy of the results.

6.2 Experimental Results for Query Performance

We evaluate the query performance results of Queries 2 and
3 and omit the results of Query 1, as it can return results
much faster than the other two. We simulated queries being
issued by 100 analysts simultaneously. The targeted tweet
IDs specified in the WHERE clause are tweets containing
“Liberty Democratic Party of Japan” (LDP, the current rul-
ing party in Japan)-in other words, users who want to in-
vestigate retweet and user rankings related to the LDP. We
measured the response time per query. Each user issues a
query ten times in each time slot. The SQLs used in the
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Fig. 6 Response time of Query 2 and Query 3.

Fig. 7 Filtering rate and threshold in each time slot.

experiment are the same as those in Sect. 4.
Figure 6 shows the median value in each time slot for

Queries 2 and 3. The response time at 10 p.m. is the longest
in the original results because the total number of rows in the
in-memory database is largest. In all time slots, method (a),
method (b), and method (c) are able to maintain a response
time under one second.

Figure 7 shows the filtering rate and threshold in each
time slot. The rate is determined to satisfy the SLAs of the
results of all Queries. We filtered out incoming tweets to a
maximum of 70% in method (a). Because the total number
of rows at 10 p.m. in the in-memory database is largest, 70%
of incoming tweets had to be filtered out to meet the SLA.
The response time of method (b) was much faster than one
second, but if we set a lower threshold value (e.g., 0.09), the
response time became longer than one second. We therefore
adjusted the threshold to 0.1. In the case of method (c), the
system set the threshold value from 400 to 1400, meaning
the system filtered out tweets/retweets whose weight was
lower than the threshold.

Figure 8 shows the CPU utilization of each query. Our
system consumed over 80% of CPU resources with the orig-
inal data, which was reduced to under 50% after filtering.
This shows that we can reduce performance degradation
by filtering tweets during bursting. At the same time, this
would affect the accuracy of query results. We evaluate the

Fig. 8 CPU utilization.

Fig. 9 Coverage of the original result.

accuracy of the query results in the next experiment.

6.3 Evaluation of Accuracy of Query Results

Figure 9 shows coverage of the analysis results compared
with the original results. The results of Query 1 show cov-
erage of the total number of diffusion network edges in the
top 100 tweets. We counted the total number of edges (one
edge = a pair of Src and Dst) of a diffusion network created
by tweets in the ranking. Each tweet in the ranking has a
diffusion network of retweets, as described in Sect. 4. We
calculated the top 100 tweets (Query 2) and users (Query 3)
after applying methods (a), (b), and (c), at 10 p.m. Then we
measured how many tweets/users are retained in the top 100
results compared with the original top 100 results. Here,
100% mean that all results of the original top 100 are re-
tained.

In Query 1, methods (a) and (b) failed on about 70%
and 55% of edges, respectively, while method (c) main-
tained at about 90%. This means that the diffusion network
after filtering with methods (a) and (b) failed at 70% and
55% of the edges, respectively. In the case of method (c),
the diffusion network whose original user had a large num-
ber of followers was not filtered out. Method (a) could keep
over 90% in Queries 2 and 3, which we consider reason-
able since the 70% sampling reduced the number of tweets
while mostly retaining popular tweets because the number
of retweets is originally large. The accuracy of method (b)
for Queries 2 and 3 were under 50%. This indicates that
many popular retweets were filtered out when the search
keywords were reduced. Method (c) was able to maintain
an accuracy of about 80%, but this is lower than method
(a). One reason is that some users who have a small num-
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ber of followers are retweeted widely but are filtered out
by method (c). Take the 12th-place user in the original
user ranking as an example. This user was filtered out by
method (c) since its weight value was lower than the thresh-
old. However, this user was retweeted by a user with 30,498
followers, which resulted in the tweet having the chance to
be retweeted by many more users than usual.

7. Improved Method for Attribute-Based Filtering

7.1 Improvement of Attribute Filtering

The coverage rate of method (c) can be improved by consid-
ering the information of users who retweeted. Currently, we
refer only to user information of the original tweet. In this
section, we modify the procedure of our filtering method.

The getUserInfo method returns a weight value related
to the user who posted the original tweet if t is retweeted.
We also calculate a weight value for the user who retweeted.
If the weight value is more than a threshold, the retweet is
not filtered out. Furthermore, we retain subsequent retweets
even if their weight value is lower than the threshold.

For example, assume a tweet is retweeted like in
Fig. 10. We assume that the weight value of the user who
posted the original tweet is lower than the threshold. The
whole diffusion data is filtered out by our original filtering
method because we refer only to the information of the user
who posted the original tweet. In the improved method, if
the weight value of user A is more than the threshold, the
user’s subsequent retweets are not filtered out. Specifically,
the retweets framed by the red rectangle in Fig. 10 are re-
tained in the in-memory database.

The procedure of the improved method is as follows. If
the weight value of a retweeted user is more than the thresh-
old, the tweetID of the original tweet is stored in retainList
to prevent the subsequent retweets from being filtered out.

We assume that popular retweets will be retained more
frequently than with the original method, but we have to
increase filtering ratio to meet the SLA. We applied the im-
proved method (= method (c)’) at 10 p.m. The threshold
was set to 2500 to keep the query response time under one
second.

Figure 11 shows coverage of the analysis results with
the improved method. Method (c)’ demonstrated improved
accuracy in all queries. More specifically, method (c)’ had
results comparable with those of method (a) in Queries 2
and 3 and outperformed method (a) in Query 1.

Fig. 10 Tweet diffusion example by retweets.

7.2 Evaluation of Our Improved Method with Other Sce-
nario’s Data Set

Up to this point, we have experimented with an election data
set. Such burst event is predictable since it is scheduled in
advance, but sometimes unpredictable events such as dis-
asters or blackswan occur, too. In this section, we evaluate
our improved method with unpredictable scenario’s data set.
Our capacity control system is applicable to any situation
because the system always monitors query performance, and
when the performance does not meet the SLA, the system
adapts the threshold immediately.

In this experiment, we used Japanese tweets/retweets
including disaster terms related to “earthquake” from
Twitter on 4/14 2016, which is the date the 2016 Kumamoto

Fig. 11 Coverage of the original result compared with that of the
improved method.
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Fig. 12 Response time of Query 2 and Query 3, and threshold.

Fig. 13 Coverage of the original result.

Earthquake occurred in the Kyushu region of Japan. The
earthquake occurred at 9:26 PM, so we measured the query
performance from 9:00 p.m. to 11:00 p.m. The total number
of tweets/retweets was 950,177. Our test environment is the
same as in Sect. 6.

The targeted tweet IDs specified in the WHERE clause
in Queries 2 and 3 are tweets containing “blackout” or “shel-
ter”.

Figure 12 shows the median value in each time slot of
Queries 2 and 3. After the earthquake, the response time
at 10 p.m. was over one second. Our improved method can
maintain a response time under one second after 10 p.m.
Figure 13 shows the coverage of analysis results with the
improved method. As shown, it could cover 99% of the
original results in all queries. Our system confirmed effec-
tiveness with the unpredicted scenario.

8. Related Works

There have been various studies on the use of information
diffusion analysis in social networks.

Truthy [15] is a Web service that tracks political infor-
mation on Twitter. It provides real-time analysis of infor-
mation diffusion on social media by mining and visualizing
massive streams of microblogging events. Gupta et al. [16]
tried to identify the important content and source-based fea-
tures, seeking those that can predict the credibility of in-
formation in a tweet. They presented an algorithm to auto-
matically calculate the credibility. TweeQL [17] is an SQL-
like query interface for streaming Twitter data. The stream-
ing API allows users to issue long-running HTTP requests
with keyword, location, or user ID filters, and then to col-

lect the matching tweets that appear in the stream. Taxidou
et al. [18] introduces a system for real-time analysis of in-
formation diffusion on Twitter. It provided a visualization
tool with their estimation algorithm of information cascade.

Although these works pertain to streaming social me-
dia analysis services, they focus on the algorithms used for
analysis. In contrast, our focus is the development of a real-
time analysis system and an efficient framework to enable a
superior diffusion analysis performance.

Real-time analysis of streaming data has been stud-
ied by many researchers [19]–[21] who have set continuous
queries over data streams to optimized query performance.
The queries are fixed in advance and periodically used for
incoming streaming data within a specified window.

In contrast, our system is developed for interactive use.
We assume that many queries run simultaneously so that
many analysts can issue various queries. It is important to
return the required data rapidly since the system is used in-
teractively in real-time. S-Store [22] is a streaming process-
ing that uses an OLTP engine. It supports SQL and focuses
on transactional support of streaming data.

9. Concluding Remarks

In this paper, we introduced a real-time monitor and analysis
system for information diffusion data. Analysts can use our
system interactively to find tweets retweeted by many users
as well as to identify the key people who are retweeted fre-
quently by many users or who have retweeted tweets about
particular topics. On social media, tweets about a partic-
ular topic are often posted by many users in a short time.
In this case, our system must process thousands or tens of
thousands of tweets simultaneously, which can cause per-
formance degradation stemming from a lack of memory or
CPU resources in the stream server. It is important to main-
tain a nearly real-time response time against queries and to
detect popular messages, as our system is designed to be
used interactively in real-time by many analysts.

To maintain query performance, we developed a capac-
ity control method that filters incoming tweets using extra
attribute information of tweets. We evaluated the effective-
ness of the filtering method for capacity control with Twitter
data. Conventionally, there is a trade-off between query per-
formance and accuracy of analysis results. We showed that
the query performance can be improved by our method and
that it is better than the existing methods in terms of main-
taining query accuracy. We also confirmed that our method
works well in two different types of bursting scenarios.

For future work, we will evaluate our method with ad-
ditional data sets.
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