A Decentralized System of Genome Secret Search
Implemented with Fully Homomorphic Encryption

Yuri Yamamoto, Ochanomizu University and Masato Oguchi, Ochanomizu University

Abstract—An outsourcing system for calculating the
statistics of genome data has been proposed as a method
for utilizing genomic data in bioinformatics research.
Individual genome data need to be encrypted from the
viewpoint of privacy protection. In previous research, a
client/server system was proposed for the string search of
genome sequences using fully homomorphic encryption.
The authors also improved the query and calculation algo-
rithms for taking more advanced statistics of the genomic
data for use in the future. However, calculations using
fully homomorphic encryption are highly complex. In this
study, we proposed the implementation of a master/worker
decentralized system on the server side of a string search
system for the genome using fully homomorphic encryp-
tion. We propose a decentralized system that is operated
in a cloud computing environment.

Index Terms—Decentralized System, Fully Homomor-
phic Encryption, Genome Secret Search

I. INTRODUCTION

In bioinformatics research, it is necessary to utilize
the statistics of genomic data possessed by research insti-
tutes, hospitals, and other organizations. In general, since
the human genome consists of approximately 3 billion
bases, it is necessary to calculate the statistics of the
genome data on high-performance computers [1]. It is
difficult to provide high-performance computers to each
organization and utilize the data of other organizations.
Therefore, we believe that an outsourcing system, which
can possess storage for the large amount of genomic
data for each organization and high-performance com-
puters for calculating the genome statistics, so that each
organization can query the system and get results, will
be widespread in the future. However, since the human
genome is an important personal identifier, it is necessary
to protect the privacy of the data using encryption.

The use of a common key cryptosystem is the usual
method to develop a client/server system for genome
string search. However, to calculate the statistics of
encrypted data with complex expressions, it is necessary
to send the key to decrypt the sensitive data on the server
side. It is difficult to protect the privacy of the client’s
genomic data when it is sent to the server side. Previous
research [2] applied additive homomorphic encryption,

which is able to perform the addition of ciphertexts to
the algorithms of string search for the genome, but there
are complex and heavy calculations that are difficult to
perform to prevent the leakage of the genomic data from
the results on the server [3].

Previous research [3] proposed a secure genome
search protocol using fully homomorphic encryption
(FHE) that supports both addition and multiplication
in encrypted form to calculate the similarity between a
query and a database. Then, they protected the data using
the recursive oblivious transfer protocol and optimized
the algorithm by making use of a discrete data structure.
However, the calculation time on the server side tends to
be excessive because of large computational complexity
of the FHE. In this research, we adopted a master/worker
decentralized system for the calculation of the server side
to improve the runtime of the genome secret search for
an experiment on the system of the cloud computing.

II. FuLLy HomomoRrpHIC ENCRYPTION

FHE is a cipher that supports both the addition and
multiplication operations of ciphertexts like expressions
(1) and (2). This property enables the polynomial cal-
culation of ciphertexts like plaintexts. Although FHE
provides a function of public key cryptography, it is
possible to obtain the encrypted results of the opera-
tion on the plaintexts from the operation on ciphertexts
without using the secret key. Therefore, applying FHE to
the genome secret search makes it possible to perform
the statistical processing of the genomic data without
passing a secret key.

)
2

Public key cryptography was first devised in the latter
half of the 1970s, and Gentry [4] proposed the method of
the FHE algorithm in 2009. First, it seemed to be difficult
to use in applications because of its large runtime, but
various improvements have been made to the algorithm
of FHE to make it adequate for simple calculations.
However, there is difficulty with the large computing
complexity of the FHE calculations. The size of FHE

Encrypt(m) ® Encrypt(n) = Encrypt(m + n)
Encrypt(m) @ Encrypt(n) = Encrypt(m X n)



cypher text tends to be large because it is necessary to
add noise to maintain the difficulty of decryption of the
calculations on the server side as well as a means of
removing the noise at the time of the calculation of the
client’s decryption.

III. PrEvVIOUS RESEARCH

In this section, we provide an overview of the genome
secret searching method by FHE as implemented by
previous research[3].

A. Problem Setting

We describe an assumed model case in a two-party
genome secret search system. A server holds a set of
genome sequences aligned by each sample in a database.
Since the genomic data are composed of sequences of
4 different nucleotides, A, G, C and T, the implemented
genome secret search is regarded as a 4-kind-character
search. The genomic data uses single-nucleotide poly-
morphism(SNP) sequences, which are specific positions
where individual differences are likely to appear, rather
than the entire genome sequences. By arranging the long
genome sequence of each sample in a row, it is possible
to evaluate the differences between samples in a specific
position of the genome sequence of each column.

A client making an inquiry transmits it to the server
together with the starting point of the search (search po-
sition) to calculate the number of matches with the query
and database. Then, the server performs calculations on
the data and transmits the result, which is the length
of the matched characters of the query to the database,
to the client. The goal of the previous research was to
perform this search as fast as possible while preserving
the privacy of the data on both the server side and client
side.

B. Method of the Previous Research

Ishimaki et al. (2015) designed a genome secret search
method that is built on FHE for obtaining more advanced
statistics of the genomic data for use in the future.
They reduced the runtime of the system by a packing
technique that enables encrypting an integer vector into
one ciphertext. The method was tested as a server/client
system, which consists of one server connected with
one client. The overview of the system is that a server
receives a character of the query from a client, performs
matching with the genomic data that it possesses, and
then returns the result to the client. At this time, to
preserve the privacy of both the server and the client
from each other, the server uses a recursive oblivious
transfer protocol to add noises [2]. In the protocol, the

client encrypts a character of the query, transmits it,
and creates an inquiry for the next character by using
the returned result. The client can obtain the result by
comparing the received result with the data prior to the
communication.

To reduce the runtime of the method, the genomic
database is converted to the arrangement of a positional
Burrows-Wheeler transform (PBWT) which is a discrete
data structure used to search for a substring match for a
set of aligned genome sequences. Because of the PBWT
and the recursive oblivious transfer protocol, the system
performs its calculations using the data of only a part
of the database. Adding dummy search positions to the
information of the search position that the client sends
to the server also preserves the privacy of the data. As
described above, various methods have been used for
speeding-up the system and preserving privacy.

IV. PropPosep METHOD
A. Overview of Proposed Method

In this research, we propose a master/worker decen-
tralized system of genome secret search using FHE. An
overview of the proposed system is shown in Figl.

FHE
Workers Calculations
High-speed LAN
s hi (106bps Ethernet) HaAkLLLY
s B TCGTCCTTAG
KICGC:I s GCTCTCCCA
7 Internet Master
Client RAGCTACCC
— RGCCCTATTT
. p \ J [TReTceTTe
. — " [CcoerTcCA
- ’ —
TGCCTACCC
ACCCCARAT
é 3 TCGAACTTAT)
- - 3 GCTCTCTTAC
- GAGCTAATT(
<€— Result —%‘ CGI11GGITqg
TCGTCCTTAC
¥ [AGTCTCACG

Fig. 1. Overview of the Proposed System

(1) The client encrypts one character of the query and
sends it to the master with the public key.

The master transfers the received data to each
worker.

The workers calculate the result using FHE and
transfer it to the master.

The master collects the result and sends it to the
client.

The client gets the result by decoding the received
data and then, using the result, encrypts the next
character of the query and sends it to the master.

(2)
3)
“4)
&)



(6) (2)-(5) are repeated as many times as the length
of the query, and the client obtains a match by a
comparison between the initial result and the final
result.

These protocols were implemented in C++. The FHE
calculations of this system are implemented with HEIib
[5], which is a homomorphic encryption calculation
public library on GitHub. We also use Open MPI [6],
which is one library implementation of Message Passing
Interface (MPI) [7], which is a standard control and com-
munication system for the machines in decentralization.
To use the MPI library efficiently, we use Boost MPI [§]
from the C++ extension library.

B. Decentralized System

As a method of decentralization of the application, we
consider the following three approaches; decentralizing
each individual data, decentralizing each independent
calculation, or decentralizing independent algorithm.
Most of the calculations of the previous research system
are FHE calculations between a character of the query
and the database, and they are independent for each
database. Therefore, in the proposed system, the function
of the workers was implemented by considering the
division by database of the server side.

C. Cloud Computing

We did an experiment using the method on a cloud
environment like that in Fig.2. When applying this
method to an actual cloud environment, it is assumed
that a longer communication time will be needed than
that in the experiment in a local environment because it
will be necessary to include the transmission through
the Internet along with the server and client interac-
tion. The master/worker cluster of this system on the
Ochanomizu University side communicates on 10 Gbps
Ethernet. Therefore, communication between the master
and workers is very fast, even if the throughput of
communications on the Internet between Ochanomizu
University and Waseda University is low.

V. EXPERIMENTAL RESULTS AND DIscussioN
A. Experimental Environment

The program of the proposed system was executed
on 4 homogeneous machines with an Intel ® Xeon
® Processor E5-2643 v3 3.4 GHz, 6 cores, 12 threads,
memory capacity 512 GB, RAID 0 SSD 480GB, HDD
2TB. One machine has the function of master and one
slot with the function of a worker at the same time, while
the other machines each have 2 slots with the function

Ochanomizu University
(Master, Workers)

Intel@xeond
E5-2643 v3

Waseda University (Client)

Internet

Intel@Xeon®@
E7-8880v3 Router

“ (YAMAHA RTX1210)

Router
(YAMAHA RTX1210)

Fig. 2. Experimental Evironment for Cloud Computing

of a worker. We conducted experiments to compare
the execution time for different numbers of workers by
operating with workers in up to seven slots. The genomic
data used for the experiment was 2,184 samples with
10,000 characters per sample. The user’s query string
had a length of 5. Dummy searches are also conducted
to improve the security, starting from 50 locations in the
database.

B. Evaluation of execution time for master and client
for each number of workers

We operated a program for calculating the matching
between the query and the database on the decentralized
system. This experiment was run 3 times, and graphs of
the average execution time of the master and client by
the number of workers are shown in Fig. 3 and Fig. 4,
respectively.

700

600

o\

A N
200 \
\

100

=s=Total

===Calculation

=+=0thers
(Communication)

Average Execution Time (s)

1 2 3 4 5 6 7
A Number of Workers

Fig. 3. Average execution time of the master by the number of
workers(s)

As the number of workers increases, the calculation
time is reduced in the execution time on the master side,
as shown in Fig. 3. However, the effect of the decentral-
ization on the calculation time is gradually flattened. In
addition, as the number of workers increases, the waiting



700

600

500 \
300
===0thers
\.\\o—. (Communication)
o ——————

200

—+—Total

==Calculation

Average Exection Time (s)

100

A Number of Workers

Fig. 4. Average execution time of the client by the number of
workers(s)

time, including the decoding time of the results by the
client and communication time, does not much change,
so the overhead in the mutual communication with the
client is considered to be small.

In the execution time on the client side, as shown in
Fig.4, the client waits until the calculation on the master
side is complete, and the calculation time for decoding
the results on the client side does not much change with
the number of workers.

The results of comparing the calculation time of each
worker in the experiment with 7 workers are shown in
Table 1.

TABLE I

CALCULATION TIME OF EACH WORKER IN EXPERIMENT WITH 7 WORKERS

Worker Name | Calculation Time
Worker 1 120.78
Worker 2 119.53
Worker 3 119.58
Worker 4 119.76
Worker 5 119.76
Worker 6 120.21
Worker 7 120.31

From Table I, there is almost no difference in the
calculation time for different numbers of workers. Ad-
ditionally, in the case of a specific number of workers,
the difference in the calculation time between workers is
very slight. In the implementation of the experiment, the
data transmission and reception between the master and
each worker are performed synchronously. The system
for the genome secret search performs simple matching,
so there is no difference in the calculation time between
workers. Therefore, the overhead of the synchronization
for the waiting time in the master/worker decentralization
is minimal.

C. Evaluation of decentralization efficiency by the num-
ber of positions

We conducted an experiment changing the number
of search positions by adding dummy positions. Fig. 5
shows the result of the experiment with the number of
search positions for each number of workers, and Fig. 6
shows the decentralization efficiency of the experiment.
The decentralization efficiency is calculated from the
expression (3) [9].

Efficiency = Sequential Execution Time (s)

/ Parallel Execution Time (s) 3)

900

800 Search
3 200 Position
Q
E 600 —-10
= ——20
O 500
3
g 400 ——40
Lé:o 300 < —e—50
© —=60
Ch.) 200 =
> 70
< 100 :57 I

0
1 2 3 4 5 6 7
A Numbet of Workers

Fig. 5. Average execution time of the master by the number of
positions for each number of workers

Search
Position

IS

35 / ——10
c
2 s —30
.U
E ——40
w
/ ——50
1.5
1
70
05 ——s50
0
1 2 3 4 5 6 7
A Number of Workers

Fig. 6. Decentralization efficiency by the number of positions for
each number of workers

From Fig. 6, it can be seen that the efficiency increases
with the numbers of workers and search positions. As
mentioned in the section on III-B, various methods have



been used in previous research for speeding up the
genome secret search. Particularly in the methods of
the recursive oblivious transfer protocol and the PBWT
structure for the database, the query searching does not
need to search the entire range of the database but rather
only the range of the length of the query from the
search positions. Therefore, in experiments with fewer
search positions, the proportion of the calculation time of
the sequential execution part, which includes steps such
as preprocessing, increases compared with the parallel
calculation, so the decentralization does not significantly
improve the efficiency. On the other hand, in experiments
with many search positions, the effect of decentralization
in the database is more likely to appear, because the
search positions that are the start bases of the search
are covered on the database, and the calculation range
expands.

We consider Amdahl’s law as a model of the relation-
ship between the degree of parallelism of the system and
the expected efficiency of the experiment. Amdahl’s law
gives an upper bound on the speedup efficiency of the
parallel execution of a task [9]. Amdahl’s law can be
explained by several formulas, but we consider a model
that applies the simplest formula(4).

1

(1 = pctPar) + %Par

Efficiency < 4)

Where pctPar is the percentage of the execution time that
will be run in parallel, and p is the number of cores on
which to run the parallel application.

Fig. 7 is a graph of the efficiency calculated with
various percentages of parallel execution time from for-
mula(4).

When comparing Fig. 6 and Fig. 7, it is considered
that the percentage of parallel execution time of the
experiment with 80 search positions is approximately
90%. Similarly, when setting the number of positions
to 10, the percentage of the parallel execution time
is considered to be slightly higher than 50%. We can
also calculate the efficiency when assuming an infinite
number of workers from Amdahl’s law. For example,
at a 90% parallel execution ratio, the efficiency of the
experiment with 80 search positions will be less than 10
even using an infinite number of workers.

Therefore, as the amount of calculation with the
database changes according to the number of posi-
tions, the percentage of the parallel execution time also
changes. Then, the decentralization efficiency is changed
like in Fig. 6, and the efficiency is high in the experi-
ments with many positions.

5.5 Parcentage
of Parallel
5 .
Calculation
4.5 ==100%
> 4 ./
E —=99%
2 35
K]
E ——95%
w 3
25 =*=90%
2
—=75%
15
1 —*=50%

A Number of Workers

Fig. 7. Theoretical efficiency of the parallel calculation time based
on Amdahl’s law

VI. CoNcLUSION

We designed a master/worker decentralized system for
genome secret search using FHE on the server side and
conducted an experiment in an environment assuming
cloud computing. The system applies decentralization by
a sample of the database. As a result, the calculation time
on the master side decreased according to the number
of workers, and the waiting time was almost always
short. When evaluating the decentralization efficiency,
an experiment with many search positions indicating the
starting point on the database showed a high efficiency of
decentralization. We compared the result with the ideal
efficiency calculated by the Amdahl’s law.

In the future, we will design a method for faster
decentralization such as by utilizing a data structure
and cache. Additionally, a genome secret search system
using FHE that does not require character-by-character
communication has been proposed, so we also want to
adapt decentralization to the proposed system [10].

ACKNOWLEDGMENT

I would like to thank the members of the Yamana
Laboratory of Waseda University and the Yamaguchi
Laboratory of Kogakuin University for their valuable
advice.

Yu Ishimaki from Waseda University, in particular,
provided me with much of advice on the programming of
the genome secret search system that I deeply appreciate.

This work was partly supported by JST CREST Grant
Number JPMJCR1503, Japan.



(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]
(9]

(10]

(11]

[12]

REFERENCES

1000 Genomes Project Consortium et al. An integrated map
of genetic variation from 1,092 human genomes. Nature,
491(7422):56-65, 2012.

Kana Shimizu, Koji Nuida, and Gunnar Ritsch. Efficient
privacy-preserving string search and an application in genomics.
Bioinformatics, 32(11):1652-1661, 2016.

Yu Ishimaki, Kana Shimizu, Koji Nuida, and Hayato Yamana.
Poster: Privacy-preserving string search for genome sequences
using fully homomorphic encryption. I[EEE Symposium on
Security and Privacy, 2016.

Craig Gentry et al. Fully homomorphic encryption using ideal
lattices. In STOC, volume 9, pages 169—-178, 2009.

Shoup v. and halevi s. http://shaih.github.io/HElib/index.html.
Accessed: 2017-1.

Open mpi. https://www.open-mpi.org/. Accessed: 2017-1.
Peter S Pacheco. Parallel programming with MPI. Morgan
Kaufmann, 1997.

Boost. http://www.boost.org/. Accessed: 2017-1.

Clay Breshears. The art of concurrency: A thread monkey’s
guide to writing parallel applications. ” O’Reilly Media, Inc.”,
2009.

Yu Ishimaki, Hiroki Imabayashi, Kana Shimizu, and Hayato
Yamana. Privacy-preserving string search for genome sequences
with fhe bootstrapping optimization. In Big Data (Big Data),
2016 IEEE International Conference on, pages 3989-3991.
IEEE, 2016.

Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma. Privacy-
preserving genome-wide association studies on cloud envi-
ronment using fully homomorphic encryption. BMC medical
informatics and decision making, 15(5):S1, 2015.

Shai Halevi and Victor Shoup. Algorithms in helib. Cryptology
ePrint Archive, Report 2014/106, 2014. http://eprint.iacr.org/
2014/106.



