
Performance Improvement in WLAN and LTE Based on
Backlog Control Middleware

Ayumi Shimada, Masato
Oguchi

Department of Information
Sciences

Ochanomizu University
Tokyo, Japan

ayumi@ogl.is.ocha.ac.jp
oguchi@is.ocha.ac.jp

Saneyasu Yamaguchi
Kogakuin University

Tokyo, Japan
sane@cc.kogakuin.ac.jp

Heidi Kaartinen, Marjo
Heikkilä, Joni Jämsä

Centria Research and
Development

Centria University of Applied
Sciences

Ylivieska, Finland
heidi.kaartinen@centria.fi
marjo.heikkila@centria.fi

joni.jamsa@centria.fi

ABSTRACT
Smartphones have highly functional operating systems sim-
ilar to PCs. Their communication throughput depends on
behavior of Transmission Control Protocol (TCP). Mod-
ern loss-based TCP algorithms take aggressive congestion
window (CWND) control strategies in order to gain better
throughput, but such strategies may cause a large number
of packets to be backlogged and eventually dropped at the
entry point to the wireless access network. This problem ap-
plies not only to the downstream TCP sessions but also to
the upstream TCP sessions when the terminal is connected
via a wireless network, such as Wireless Local Area Network
(WLAN) and Long Term Evaluation (LTE) network, which
disregards the size of packets in its scheduling. This paper
focuses on the ACK packet backlog problem with the up-
stream TCP sessions, and proposes a CUBIC based CWND
control mechanism as part of the middleware for the An-
droid terminals. It utilizes the Round Trip Time (RTT) as
an indication for the TCP ACK backlog condition at the
WLAN AP and LTE base station, and controls the upper
and lower bounds of its CWND size to suppress excessive
transmissions of own TCP DATA packets. Our experimen-
tal study with up to seven Android terminals shows that the
proposed mechanism can improve both aggregate through-
put and fairness of the WLAN. In addition, our evaluation
on LTE network demonstrates that the method suitably con-
trols congestion and communication delay also on LTE net-
work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MOBIQUITOUS ’16 Adjunct Proceedings, November 28-December 01,
2016, Hiroshima, Japan
c© 2016 ACM. ISBN 978-1-4503-4759-4/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3004010.3004029

CCS Concepts
•Networks → Transport protocols; Wireless access
points, base stations and infrastructure; Traffic en-
gineering algorithms; Network performance evalua-
tion;

Keywords
TCP, congestion control, CWND, RTT, Android

1. INTRODUCTION
As performance of terminals is improved and a bandwidth

of a network becomes higher, modern loss-based TCPs such
as BIC [1] and CUBIC [2] take aggressive CWND control
strategies in order to gain better throughput over other com-
peting TCP sessions. Although such strategies are suitable
for wired connections, they may cause a large number of
packets to be backlogged and eventually dropped at the en-
try point to the wireless access network. This is because
a wireless link can usually offer much narrower bandwidth
than its wired backhaul and backbone networks. This prob-
lem applies not only to the downstream TCP sessions but
also to the upstream TCP sessions when the terminal is con-
nected via a WLAN, which disregards the size of packets in
its CSMA/CA [3] based scheduling. This problem depends
on performance of terminals and type of networks. There-
fore, this paper focuses on the ACK packet backlog problem
with the upstream TCP sessions in several environments,
and proposes a CUBIC based CWND control mechanism
as part of the middleware that can be implemented in the
Android terminals. It utilizes the RTT as an indication for
the TCP ACK backlog condition at the WLAN AP, and
controls the upper and lower bounds of its CWND size to
suppress excessive transmissions of own TCP DATA packets.
An experimental study with up to seven Android terminals
shows that the proposed mechanism can improve aggregate
throughput of the WLAN, and that it is highly effective
particularly for cases where very long RTTs are observed.

2. RELATED WORK
In the case of a wired network, TCP has originally as-

sumed that a packet drop is an indication of network con-
gestion, since the primary reason for a packet to be dropped

http://dx.doi.org/10.1145/3004010.3004029

is the queuing overflow at one of the routers along the path
to the other communication peer. However, wireless com-
munications introduce other causes for packet drops such as
fading, collisions and interference, which confuse the TCP
CWND control algorithm to lead to suboptimal performance.
Such effects of wireless communications on the TCP per-
formance as well as techniques to combat those have been
extensively studied [4] [5] [6] [7] in the literature.

We also have studied intensively about this problem in
various environments. Our previous work [8] [9] is one of
them, in which each WLAN terminal attempts to estimate
the number of neighboring terminals that operate on the
same channel by monitoring broadcast activities, and ad-
justs its CWND size accordingly to gain its fair share. De-
tails of this work are described in section 3.3. This paper
presents the results of the behavior of Android terminals in
LTE networks.

3. BACKGROUND

3.1 Android OS
This study focuses on the implementation of our proposed

mechanism as a middleware of the Android platform. An-
droid is a platform for mobile terminals whose development
is led by Google, and is distributed as a package that in-
cludes an Operating System and basic applications. The
source code of Android is available via the Android Open
Source Project by the Open Handset Alliance [10]. Thus
we can apply our proposed method to any other Android
terminals with minor modification.

Please note that Android is built based on the Linux
kernel, which provides basic capabilities such as multistack
networking, multitasking, virtual-memory management and
virtual machines. Therefore, this work can be applied to
any other Linux based terminals or systems although the
performance evaluation has been conducted only with An-
droid terminals.

Since the default TCP version in Linux is CUBIC, An-
droid adopts CUBIC as the transport protocol. CUBIC,
like any other transport protocols, controls the rate of data
packet transmissions based on CWND, the maximum num-
ber of packets that can be transmitted without receiving an
ACK packet from the data packet receiver. Setting an ap-
propriate CWND is the key to achieving high throughput,
which is the primary difference between various versions of
TCP.

In CUBIC, CWND is increased gradually per receiving an
ACK and halved every time a packet loss is experienced as
shown in Figure.1. This figure is captured in our experimen-
tal system. As the CWND size is reduced upon a packet loss,
it is called a loss-based TCP. Other CWND control mecha-
nisms used in TCP Vegas and TCP Westwood are based on
the observed RTTs, and are called a delay-based TCP [11].
Cubic also has a unique feature that changes its CWND with
passing time, which is not seen in other loss-based TCP.

3.2 Kernel Monitoring Tool
We have developed a method to observe a behavior of pa-

rameters inside the Linux Kernel code. Our previous work
successfully embedded a system tool called Kernel Monitor-
ing Tool in the Android platform in order to analyze the
connection status of a mobile host [12]. As shown in Figure
2, it allows users to monitor parameters in the kernel pro-

Figure 1: Behavior of CUBIC TCP

cessing at the mobile host, which include CWND, RTT, and
timing of errors. They are defined in the TCP implementa-
tion of the Linux Kernel code, and applications in the user
space can generally never observe or even recognize them.
By means of Kernel Monitoring Tool, our middleware can
access the current values of these parameters in the kernel
memory space

Figure 2: Kernel Monitoring Tool

3.3 CWND-Controlling Middleware
This subsection describes the CWND-controlling middle-

ware that has been implemented in our previous work [8]
[9]. This middleware has been developed based on Kernel
Monitoring Tool(Section 3.2). It is responsible for control-
ling middleware to determine CWND size when the Android
terminal is connected to the server via a WLAN or LTE net-
work and congestion is detected. Congestion happens when
another terminal that shares the same AP begins commu-
nication and the RTT values suddenly increase as a result.
CWND control is done by setting levels of upper limit for
the CWND based on the length of backlog in AP and the
number of communication terminals using the proc interface.

First, an estimate of the length of backlog in AP is ob-
tained from RTT value which is monitored by Kernel Mon-
itoring Tool. Based on the acquired value, RTT Ratio (ra-
tio rtt) is calculated with Expression.1, which indicates in-
crease and decrease of RTT. A value of minimum RTT (min rtt)
is updated by overwriting with the smallest RTT during the
communication. After calculating the RTT ratio value, up-
per limit size called MAX CWND1 is set according to RTT
ratio in accordance with Table.1. The bigger RTT ratio be-
comes, the smaller MAX CWND1 becomes.

ratio rtt =
current rtt

min rtt
(1)

Table 1: Approach of CWND ajustment
ratio rtt 1 2 3 4 5 6 7 8 9 10

max cwnd1 330 150 100 50 10 10 10 10 10 10

Next, broadcasting User Datagram Protocol (UDP) pack-
ets to each terminals connected to the same AP, the number
of terminals using proc interface is counted. The notification
of UDP is broadcasted every 0.3 seconds because the ker-
nel parameters frequently change. By contrast, the adjust-
ment by middleware is executed every 10 seconds because
the number of mobile hosts changes less often, and this lower
frequency is sufficient to collect information from all hosts,
considering the interval and the arrival rate of the notifica-
tions. After obtaining the number of terminals, upper limit
size called MAX CWND2 is set based on the number of ter-
minals according to Expression.2. The more the number of
terminals increase, the smaller the MAX CWND2 becomes.

MAX CWND2

=
Bandwidth[Mbps]×RTT [sec]

Segmentsize(1.5Kbyte)×NumberofTerminals

(2)

Finally, this system compares MAX CWND1 with MAX
CWND2 and applies smaller one as ideal upper limit size

of CWND. Using this method, the control system can limit
the quantity of traffic outbreak and share the bandwidth of
an AP.

In this middleware, we do not modify the congestion con-
trol algorithm itself of the basic TCP, which functions sim-
ilar to the default case and should be good for the inter-
operability. Nevertheless, the communication is optimized
by setting the levels of upper limit for the CWND, and the
congestion control is adjusted based on the communication
situation of AP surroundings. In this paper, we prove our
method works well in various environments. Particularly, it
is possible to adapt our method to different network envi-
ronments, such as WLAN and LTE-networks.

4. TESTING AT WLAN NETWORK
We evaluated basic performance in WLAN network with

an experimental system as presented in Figure.3. The client
terminals were connected to an AP over an 802.11g net-
work, and the AP was connected to the server host through
a wired route. As client terminals, we used Nexus 7 tablets.
The number of terminals ranged from 1 to 7. To emulate
network delay and packet loss, a network emulator, Dum-
mynet [13], was inserted between the AP and the server host;
256 ms delay was set by assuming a high-delay environment.
The wired parts were connected with higher rate because of
Gigabit Ethernet, whereas the bandwidth was only about
20Mbps in the wireless environment. Thus, the radio trans-
mission sections between the AP and the terminals were a
bottleneck, which is a typical case when mobile terminals
access to a remote server through a wireless network. Espe-
cially, when the number of the terminals connected simul-
taneously increases, a buffer overflow may occur in the AP

and the AP starts dropping packet. As a network bench-
mark tool, Iperf for Android [14] was installed on all the
terminals.

Figure 3: Experimental topology 1

Figure.4 shows the behavior of CWND and Figure.5 shows
RTT value when 1, 3, 5 and 7 terminals communicate. Dot-
ted lines show the CWND of the communication without
middleware and solid lines show the CWND of the commu-
nication when middleware was used. When the terminals
communicated without middleware, the RTT value, which
is the end-to-end delay time, significantly increased in the
case of 5 and 7 terminals. By contrast, the middleware sup-
presses the size of CWND. Therefore, when the terminals
communicated with middleware, the RTT increase was sup-
pressed.

Figure 4: Time transition of the CWND

Figure.6 shows the relation between number of terminals
and total throughput. The blue and red lines show the
throughput without and with the middleware, respectively.
As depicted by blue line, when the number of terminals ap-
proached 5 and the AP became overloaded, the throughput
without middleware started to degrade. In contrast, the red
line shows that the throughput reaches a stable level, which
demonstratesan advantageous effect of the middleware. The
performance with 7 terminals improved by approximately
1.25 times.

The middleware was also tested on Nexus S phones. Fig-
ure.7 shows the relation between number of terminals and
total throughput in an environment same as the Nexus 7
experiment. The blue and red lines show the throughput
without and with the middleware, respectively. The per-
formance with 6 terminals improved by approximately 1.74
times.

Figure 5: Time transition of the RTT

Figure 6: Effect of the middleware on Nexus 7 ter-
minals

To further improve experimental coverage, we conducted
another test, running the middleware on Nexus 5 phones.
The results showed that it is effective in a heavily crowded
network. We evaluated basic performance of a Nexus 5
phone in a WLAN network with an experimental system
as presented in Figure.8. The difference from the experi-
mental setup shown in Figure.3 is the load. In this setup,
we replaced Dummynet, and added Nexus 7 tablets running
Iperf to generate the network traffic. In this heavily loaded
network, we used two Nexus 5 phones as client terminals.

Figure.9 shows the total throughput in an environment
shown in Figure.8. The left bar shows the total through-
put without the middleware and the right bar shows the
total throughput with the middleware. The performance
improved by approximately 1.43 times.

5. TESTING AT LTE-NETWORKS
The testing environment at Centria creates a possibility to

test the effects of data traffic and congestion in a heteroge-
neous network (HetNet). In their previous studies, Centria
has been working to evaluate and improve the performance
of the mobile network. Lately, Centria has concentrated on
evaluating the performance of active antenna system (AAS)
[15]. As a result, it is seen that AAS can provide a flexible
beamforming for changing situations in the network. Ac-
cording to Centria’s tests, the AAS improves the through-
puts within the system and gives flexibility of adding capac-
ity to locations where it is needed. However, AAS needs a
lot of configuration, which is necessary in each new situa-
tion. Therefore, a significant amount of development work

Figure 7: Effect of the middleware on Nexus S ter-
minals

Figure 8: Experimental topology 2

is still to be done before the AAS is fully exploitable and
some lighter solutions are needed.

The Centria test environment includes a number of differ-
ent wireless network systems, which enables us to perform
a variety of tests(see Figure.10). Centria test based on the
WLAN setup (Figure.8).The LTE network environment con-
sisted of 2.1 GHz passive antennas. For User Equipment
we used two Nexus 5 smartphones and 6 laptops with LTE
dongle. We chose Nexus 5, since it supports LTE FDD net-
work on used band 1. One Nexus specific benefit is its clean
Android operating system without vendor specific add-ons.
This makes possible to recompile Kernel with modified func-
tionality. Iperf and the middleware were installed both on
them.

Figure.11 shows RTT values during the experiment. Dot-
ted lines show the RTT value of the communication without
middleware and solid lines show the RTT value of the com-
munication when middleware was used. When the terminals
communicated with middleware, the RTT increase was re-
duced to about a half. This shows that the middleware was
effective in this LTE network. In addition, it is possible
that the RTT of wired part affects the general performance.
Therefore, the middleware can be expected to improve total
throughput.

6. CONCLUSIONS
This study has focused on the ACK packet backlog prob-

lem with the upstream TCP sessions and has proposed a CU-
BIC based CWND control mechanism that utilizes the RTT
as an indication for the TCP ACK backlog condition at the
WLAN AP. It controls the upper and the lower bounds of its
CWND size to suppress excessive transmissions of own TCP

Figure 9: Effect of the middleware on Nexus 5 ter-
minals

Figure 10: Drive test setting of AAS on testing en-
vironment of Centria

DATA packets. Moreover, we created environment similar
to the WLAN test setup (Section 4) in the Centria’s LTE
network test (Section 5) and evaluated the transmitting per-
formance of the Android terminal. The experimental study
with up to seven (7) Nexus 7 terminals and up to six (6)
Nexus S terminals in WLAN network shows that the conges-
tion control middleware can improve the total throughput of
the WLAN. In particular, it improved the TCP throughput
in case of many terminals communicating through the same
AP. Furthermore, in a heavily crowded network, the mid-
dleware can improve the total throughput of two (2) Nexus
5 terminals.

Continuing the analysis, we evaluated the performance
in LTE network. Then, we observed that the middleware
worked in LTE network and improved the RTT values of
two Nexus 5 terminals in a heavily congested network.

Centria, in collaboration with Ochanomizu University, will
continue testing smartphones in different networks. For our
future work, we will evaluate total throughput in LTE net-
work to see the effect.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge all the people con-

tributing to the tests. Juhana Jauhiainen, Tero Kippola,
Marjut Koskela and Juha Erkkilä have worked on the tests
with the middleware on Centrias test network. Centria would
also like to thank the Finnish Funding Agency for Technol-
ogy and Innovation (Tekes) for funding the project Cyber-
security in the Wireless Industrial use case - CyberWI, on
which these tests were executed.

Figure 11: Time transition of the RTT

8. REFERENCES
[1] L. Xu, K. Harfoush, and I. Rhee. Binary increase

congestion control for fast, long distance networks. In
Proceedings of Tech. Report. Computer Science
Department, NC State University, 2003.

[2] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly
high-speed tcp variant. ACM SIGOPS Operating
Systems Review- Resarch and developments in the
Linux kernel, 42:64–74, July 2008.

[3] A CSMA/CA MAC protocol of Cognitive Networks -
emfield.

[4] P. Sinha, T. Nandagopal, N. Venkitaraman, R.y
Sivakumarand, and V. Bharghavan. Wtcp:a reliable
transport protocol for wireless wide-area networks.
Wireless Networks - Selected Papers from Mobicom’99
archive, 8:301–316, March - May 2002.

[5] C. Casetti, M. Geria, S. Mascolo, M. Y. Sanadidi, and
R. Wang. Tcp westwood: end-to-end congestion
control for wired/wireless networks. Wireless Networks
archive, 8:25–38, September 2002.

[6] L. A. Grieco and S. Mascolo. Performance evaluation
and comparison of westwood+, new reno, and vegas
tcp congestion control. ACM SIGCOMM Computer
Communications Review, 34:417–440, April 2004.

[7] S. Liu, T. Başar, and R. Srikant. Tcp-illinois: a loss
and delay-based congestion control algorithm for
high-speed networks. Innovative Performance
Evaluation Methodologies and Tools: Selected Papers
from ValueTools 2006, 65:467–479, June 2008.

[8] H. Hirai, S. Yamaguchi, and M. Oguchi. A proposal on
cooperative transmission control middleware on a
smartphone in a wlan environment. In proc, pages
710–717. the 9th IEEE International Conference on
Wireless and Mobile Computing Networking and
Communications(WiMob2013), October 2013.

[9] A. Hayakawa, S. Yamaguchi, and M. Oguchi.
Reducing the tcp ack packet backlog at the wlan
access point. In proc. the 9th ACM International
Conference on Ubiquitous Information Management
and Communication (IMCOM2015), January 2015.

[10] Android open source project website.
http://source.android.com.

[11] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and
R. Wang. Tcp westwood: Bandwidth estimation for
enhanced transport over wireless links. In proc. ACM

http://source.android.com

SIGMOBILE 7/01 Rome, 2001.

[12] K. Miki, S. Yamaguchi, and M. Oguchi. Kernel
monitor of transport layer developed for android
working on mobile phone terminals. Proceedings of
The Tenth International Conference on Networks
(ICN), pages 297 –301.

[13] The dummynet project website.
http://info.iet.unipi.it/˜luigi/dummynet/.

[14] Iperf For Android Project in Distributed Systems.
http://www.cs.technion.ac.il/˜sakogan/DSL/2011/
projects/iperf.

[15] M. Heikkilä, T Kippola, J. Jämsä, A. Nykänen,
M. Matinmikko, and J. Keskimaula. Active antenna
system for cognitive network enhancement. In 5th
IEEE International Conference on Cognitive
Infocommunications (CogInfoCom), pages 19–24,
November 2014.

http://info.iet.unipi.it/~luigi/dummynet/
http://www.cs.technion.ac.il/~sakogan/DSL/2011/projects/iperf
http://www.cs.technion.ac.il/~sakogan/DSL/2011/projects/iperf

	Introduction
	Related Work
	Background
	Android OS
	Kernel Monitoring Tool
	CWND-Controlling Middleware

	Testing at WLAN Network
	Testing at LTE-Networks
	Conclusions
	Acknowledgments
	References

