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Abstract—When the Great East Japan Earthquake occurred
in 2011, telephone and Internet could not be used in many
cases. To achieve network availability in disaster situations, we
propose the traffic control system based on SNS information. In
order to utilize the data of packet payload obtained from SNS,
deeply programmable network (DPN), which is extending SDN as
implementing programmable data plane and API (Southbound
Interface), is needed. In this paper, we use the FLARE switch,
which performs not only the function of OpenFlow but also the
traffic classification based on the application, using data plane
programmability and the content-based control of the packet
payload. By using our proposed system, more flexible network
control is achieved.

Index Terms—SDN; OpenFlow; DPN; FLARE; SNS;

I. INTRODUCTION

In recent years, Internet traffic has increased because of the
spread of high-performance mobile devices, such as smart-
phones and tablets, and the development of cloud computing.
In particular, mobile video traffic has been increasing rapidly,
and the amount will increase 13-fold between 2014 and 2019.
The increased traffic may increase the risk of occurrence of
Internet traffic congestion [1]．

Network congestion can be a serious problem, especially
in an emergency, such as an earthquake. Such large-scale
disasters often cause congestion and network failures because
base stations and network facilities are damaged and many
users are trying to access the network at the same time.
In the case of an emergency, it is important that telephone
and Internet be available. Usually, high availability (HA)
networks are implemented with redundancy or scalability of
the network. However, when the Great East Japan Earthquake
occurred in 2011, network disconnection occurred in some
areas because the reconfiguration of the switching required
manual operation, and it was difficult to grasp all network
conditions immediately [2]. This incident made people realize
the importance of a stable network control system that can
operate even in large-scale disasters. Therefore, the necessity
of a system that can grasp all network conditions immediately
and is entirely automatic became more apparent in Japan.

Several researchers have applied SDN and OpenFlow [3]
technology to wide area networks to centralize the manage-
ment and control of network devices, such as routers and
switches, using a software controller. However, the following
two challenges must be considered. First is the difficulty of

detecting network failure by only monitoring using sensors
inside of a network when the target area is wider and the
network is complicated. Second is the limit of programmabil-
ity. The advance of technology has enabled control plane(C-
plane) to be programmable, whereas the data plane (D-plane)
programmability was not considered. C-plabe programma-
bility expanded the flexibility of the network control. C-
plane programmability, however, has the limitation for the
advanced packet manipulation such as the DPI control at
the switching or routing devices. Recently, the data plane
(D-plane) programmablility is being investigated as well [4].
Therefore, using D-plane programmabiliy, we considered more
flexible control methods such as application aware flow control
which is useful for the priority control for the shortage of the
available network resources in the case of emergency.

Against this background, we propose the traffic control
system using Social Networking Service (SNS) information
in a Deeply Programmable Network (DPN) to address these
challenges. We explain our system based on two major points.
First, we use SNS information to detect network failure in
addition to the monitoring of network devices. We previously
detected failure with high accuracy using Twitter [5] in real-
time [6]. We perform traffic control based on this method
because it can specify the area of network failure and grasp all
network conditions immediately. This process is one solution
for the first challenge. In research on the [6], Maru explained
the reasons why the collective intelligence of Twitter is suit-
able as a means of information detection complementary to
conventional observation. The second point is the DPN. DPN
is the concept of a software-defined D-plane, meaning the
full programmability of a network. DPN removes the limit
of network programmability and is the solution for the second
challenge. This D-plane programmability is needed because
we focused on advanced and flexible network control, e.g.,
application specific traffic control utilizing SNS information.
In disaster situations, it is assumed that prioritizing important
traffic, such as mail, phone, or SNS, rather than mobile video
traffic which has currently increased explosively, is effective.
In order to achieve this type of application specific traffic
control, data-plane functionality must be extended from the
current SDN model where D-plane elements have limited
pattern match capabilities and too few actions.

In this paper, we use the FLARE switch [7]-[8] to achieve



the DPN environment and implement/ evaluate both a Twitter
network failure detection system and a traffic classification
system. Figure 1 shows network environment including the
proposed system. As shown in this figure, SNS information
is collected and analyzed. Based on those, the Network Con-
troller makes a decision for routing and bandwidths control
for each slices where are applied each applications, so that it
sends a direction to switches on the network.

Fig. 1. Network environment achieved by the proposed system

Our contributions in this paper are as follows.
i Integration of SNS-based Failure Detection [6] into

Network Control. We prove that it is effective to use
the network failure information extracted by the real-
time analysis of SNS in addition to the monitoring of
the network devices.

ii Advanced network software control, such as application
classification and QoS control. By applying DPN, we
can classify the application and/or device specific traffic
into slices and apply fine-grained quality of services
(QoS) assessment.

The rest of the paper is organized as follows. Section II
introduces related research studies, and Section III explains
the OpenFlow and FLARE mechanisms and compares them.
Section IV gives an overview of our proposed system. Section
V describes the experimental environment briefly, and Section
VI and VII discuss various experiments based on our proposed
system. Finally, in Section VIII, we conclude with a brief
summary and mention the future direction of our research.

II. RELATED WORK

There are several methods that control networks automati-
cally in disasters using SDN and OpenFlow software controller
[9][10][11][12][13][14][15]．NTT docomo et al. [9] achieved
QoS by using OpenFlow, squeezing the low priority traffic.
Specifically, class-based-QoS by DiffServ (Differentiated Ser-
vices) marks the QoS class to identify between the commu-
nication flow of the receiving packets and class. Using this
system, they calculated the priority of the packet. However,
this priority control cannot be used under situations where one
user uses a number of communication services. This means it

can not classify the type of applications exactly, therefore, this
work differs from ours. We identify the type of applications
under any circumstances and perform optimum control for
each of them. Ozawa et al. [10][11] proposed management
of the table of mapping IP address and GPS information
on DB and coordinating DB and the OpenFlow controller
to prioritize the traffic in disaster areas. They embedded a
disaster ID into the ToS field in the IP header to separate the
traffic and achieve QoS. Moreover, in terms of using external
information, such as Earthquake Early Warning, this research
resembles our own work. However, our research has the unique
feature of using the collective intelligence of SNS for network
control, which is based on the contents of application. In
regards to [12][13][14], they applied OpenFlow to ad hoc
wireless networks and, based on scores of priority weight that
users determine in advance, proposed QoS. Edo et al. [15], by
modeling risks of disaster with a numerical expression, had an
approximately 1.66 times performance improvement compared
with the controls using the shortest path only. However, these
studies are based on network internal information, such as
traffic monitoring data, which is different from our method
of using external information. In our work, the entire process
from obtaining SNS information to network control is done
automatically and autonomically.

Furthermore, the related works introduced above are limited
to the SDN concept, which is just the centralized management
of network devices. This means they have no idea how to
operate unique control inside of a network devices by using
programmability of the D-plane. On the point of using freely
rewritable software switches, the methods differ markedly.
These studies could not achieve a fine-grained level of control
based on the communication content. Applying the DPN
concept can enable control based on the application contents
of the packet．

III. SDN AND DPN

A. Control Using SDN/OpenFlow

OpenFlow [3] is the one of the algorithm of SDN, enabling
central control of a network. This technology has already
been commercialized, mainly in data centers providing cloud
service and enterprise LAN.

OpenFlow separates the C-plane from the D-plane. C-plane
calculates and determines the data routing path, and the D-
plane forwards data following the C-plane instructions. These
two functions are integrated into a conventional hardware
switch. In contrast, in OpenFlow C-plane is implemented as
software on the server outside of the switch, ordering the
D-plane inside of switch to transmit data. OpenFlow is the
standard interface to connect these two parts.

B. Control Using DPN/FLARE

According to Section III-A, the D-plane executes only
forwarding packets. The D-plane is not programmable and
is fixed in SDN and OpenFlow. DPN is the concept of
a software-defined D-plane to remove the limit of network
programmability and make the network fully programmable.



To achieve this DPN, FLARE [7] has developed at the
Nakao laboratory at University of Tokyo. With this technol-
ogy, by programming the D-plane and adding the required
functions, anyone can make original network devices.

In FLARE, the D-plane is implemented with a Click module
router [16], which is software module router. Click is a
language that creates network devices using software, such as
switches and routers. Some basic functions, like ”Receiving
frame”, ”Transmitting frame”, and ”Referring routing table”,
which are preliminarily prepared as modules, are the features
of Click. By combining modules, you can script the operation
of a network device. In addition, you can make your own mod-
ules to easily create unique devices. In the Nakao laboratory,
they implemented OpenFlow 1.3 software switches by Click
module, which enabled the use of OpenFlow on FLARE.

Figure 2 shows the mechanism of FLARE. The software
switch is implemented by using Click elements in the container
for which we use the word of Sliver, and the virtual network
called Slice is made by combining Slivers.

Fig. 2. FLARE method

C. Comparing SDN with DPN

DPN/FLARE enables deeper programmability of the net-
work than SDN/OpenFlow.General switches, including Open-
Flow, transmit by examining from layer 1 to 4. By contrast,
the FLARE switch can examine all layers, including a part of
the data. In other words, OpenFlow only handles up to the
Transport layer, whereas FLARE processes the whole layer
in the Application layer. For this reason, FLARE achieves
more flexible network control, like application-based control,
by distinguishing the application. Hence, FLARE is a suitable
platform because the purpose of our study is to achieve
advanced and flexible network control based on SNS infor-
mation. FLARE utilizes the data of the application layer and
data payload.

D. Application Classification on FLARE

There are several ways of classifying applications on
FLARE. We introduce the one described in [17][18]. In this
way, we attach meta information, such as the application name
or device type, to the end of the packets as a trailer (a header
is not recommended) among the users of the infrastructure.
When these packets reach FLARE, by accessing the metadata,
we can identify the application. Therefore, we achieve network
control based on application type.

IV. OVERVIEW OF THE PROPOSED METHOD

In this paper, we propose an advanced network control
system that is based on a Twitter Failure Detection system
[6] and optimizes traffic from every application. An overview
of our proposed system is given in Figure 3. (1)-(4) is
implemented by python on a controller, (5) is implemented by
click on switch, and all executions are automated. The process
flow of the proposed method is as follows.

Fig. 3. Proposed advanced network control system

(1) Receive network failure information from analyzing
SNS
By the system discussed in [6], we analyze Twitter in
real-time and detect network failure with high accuracy.
From the extracted information, we receive the number
of tweets and the area of network failure.

(2) Update the costs of links
Update the cost of links following the condition. For
example, the default costs of all links are 1. If there are
more than 20 tweets including the mapped area name
in an extracted tweet, update the cost of links by ＋ 1.
Updating is performed at 60-seconds intervals.

(3) Optimal route search
Search the optimal route by Dijkstra’s algorithm based
on the updated cost. The minimum cost of a route from
the start to the goal is set as the optimal route. (A lower
costs indicates that the available bandwidth is larger.)

(4) Route resetting
The optimal route is reset by applying flow entry to the
switch through REST-API.

(5) Application QoS control
We classify applications and assign one application to
one slice [17][18]. For each slice, set D-plane as optimal
bandwidth programmed by Click module router.

These all processes are executed automatically and auto-
nomically. In the following sections, we will perform the
experiment using FLARE switches in order to verify the
basic autonomous switching capability by using the proposed
method mentioned above.



V. EXPERIMENT ENVIRONMENT

A. FLARE Experiment Environment

We conduct experiments in the network environment shown
in Figure 4. FLARE Switch1 and Switch2 have 8 NICs of 1G
and 2 NICs of 10G for each (1G indicates 1Gbps connec-
tion, 10G indicates 10Gbps connection). FLARE Switch3 and
Switch4 have 4 NICs of 10G for each. These four switches
are combined as a mesh topology with mixing of 1G and
10G. FLARE Central, shown in Figure 4, is the management
server of FLARE, where we can create sliver and slice through
GUI. The controller shown in the red part of the proposed
system in Figure 3 is implemented on this FLARE Central
server. Through this controller, the four FLARE switches are
controlled, and various control models are verified. Table
I shows the specifications of the machines composing the
experiment environment.

TABLE I
SPECIFICATIONS OF MACHINES

FLARE switch1 ～ CPU Core i7-3612QE Mobile 2.1GHz
FLARE switch4 Memory 8GB

OS CentOS 6.4
h1～h4 CPU Core i5-4210 M 2.6GHz

Memory 8GB
HDD SATA 500GB 5400RPM
OS Ubuntu14.04

h5, h6 CPU Xeon E3-1241 v3 3.5GHz
Memory 8GB
HDD SATA 1TB 7200RPM
OS Ubuntu14.04

Fig. 4. Network Physical Diagram

B. Throughput Measuring

In this section, to test the behavior and to determine the
attribution of the FLARE environment explained in Section
V-A, the throughput is measured by iperf of each route. The
outcome regarding throughput is given in Table II. The route
with mixed 1G and 10G had decreased performance compared
with the 1G only or 10G only routes. For this reason, the
combination of 1G and 10G is a bottleneck. NOTE: These
throughputs are not related to the cost introduced in the next section.

TABLE II
THROUGHPUT OF EACH ROUTE

Route Throughput
1G10G mixed h1-s1-s3-h5 500(Mbits/sec)

h1-s1-s2-s3-h5 590(Mbits/sec)
h1-s1-s4-s3-h5 500(Mbits/sec)

h1-s1-s2-s4-s3-h5 500(Mbits/sec)
1G only h1-s1-h2 930(Mbits/sec)

h1-s1-s2-h3 930(Mbits/sec)
10G only h5-s3-h6 2.1(Gbits/sec)

h5-s3-s4-h6 1.7(Gbits/sec)

VI. EXPERIMENTS AND EVALUATION

In this section, three experiments are showed as follows.
• Proposed system verification experiment
• Throughput evaluation experiment
• RTT evaluation experiment

First, our proposed system is described in detail by a verifica-
tion experiment. After that, to evaluate this system, we mea-
sure the throughput. As a last experiment, RTT is measured
to determine the time for the switching route.

A. Verifying the Proposed System Experiment

In this study, the network control system by FLARE en-
vironment shown in Figure 4 is implemented on a wide
area network, as shown in Figure 7, which is emulated on
our experiment environment. In this section, we provide an
example of the behavior of this system, including visualization
of the experimental outcome.

1) Verifying the Proposed System: We verify our proposed
system of (1)-(4) shown in Figure 3. In this experiment,
(5) is operating OpenFlow1.3 by the Ofswitch module of
Click. Accordingly, the SDN level experiment is executed
on FLARE, which has the capability of DPN. In this ex-
periment, we use actual tweets from 14:00 to 15:00 on 11
March 2011 when the Great East Japan Earthquake occurred.
We map from FLARE Switch1 to 4 to ”Iwate”, ”Kyoto”,
”Tokyo”, ”Fukuoka”, respectively. For example, the start point
of communication is set to host1 near Iwate, and the goal
point is set to host5 near Tokyo. Through this experiment, we
verified the proposed system can switch the routes which go
around the disaster area in a disaster situation based on Twitter
information. Specific operations are as follows.

Fig. 5. System Verifying Experiment



Firstly, Route1 shown in Figure 5 (h1-s1-s3-h5) is used
because the default cost of all links is 1, so the minimum cost
of Route1 is 1. Then, 120 seconds (second update) later, the
link cost between Iwate and Tokyo is updated to 2 because the
Twitter analyzing system detects more than 20 tweets related
to network failure in Iwate and Tokyo around this time. The
tweets in Iwate and Tokyo continue increasing, so the cost of
Route1 is incremented. 180 seconds (third update) later, the
cost between Iwate and Tokyo become 3, so Route2 (h1-s1-
s2-s3-h5) is selected because Route2 has a cost 2, which is the
minimum. As a result, when Route2 is chosen by Dijkstra’s
algorithm, the route is switched by REST-API, which sets the
route to Route2.

2) Checking Port Number for Sure: From the experiment
in SectionVI-A1, the switching was successful. We prove
the success using Figure 6 to capture the switches statement
before and after the disaster. In our system, we switch the
route by changing ports through REST-API. Figure 6 shows
flow tables of the switches from left of the blue line, which
represents before the disaster, to the right of the blue line,
which represents after the disaster. The port numbers are
changed before and after the disaster. Therefore, switching
from Route1 to Route2 is achieved.

Fig. 6. Changing the Port Number before and after the disaster

3) Visualization Output of Switching Route: Figure 7 shows
a visualization of the output of the switching route shown in
Figure 3. We visualize the routing on Google Maps in real-
time based on the optimal route calculated in (3). Using this
system, you can see the switching from Route1 to Route2 on
the GUI.

B. Throughput Evaluation Experiment

Throughputs are measured using iperf to evaluate the pro-
posed system. In Route2, throughputs of the proposed system
are 588 Mbits/sec, while the system under normal conditions
are 590 Mbits/sec. Because of almost no difference between
them, we confirm that the proposed system achieves almost
full performance of Hardware without overhead.

Fig. 7. Visualization routing web page

C. RTT Evaluation Experiment

To confirm the time of switching the routes, RTT are
measured using a program sending Ping every one second.
The outcome is shown in Figure 8. Approximately 20-30 ms
RTT to switch routing can be seen because the packets do not
take a new right path while route is in the middle of switching.

Fig. 8. RTT Evaluation

VII. DISCUSSION

In the previous section, we confirmed the basic autonomous
switching capability using SNS information. In this section, we
discuss about application QoS control.

To detect the application of the traffic flow, we had de-
veloped the mechanism to add the application indicted trailer
bytes to the packet in the user devices. The FLARE switch
can parse the trailer and control the traffic using D-plane
programmability. Even for the encrypted user traffic, FLARE
switch can detect the application because the trailer bytes are
not encrypted [18].

After classifying applications into slices, we set optimal
bandwidth for each slices. To set the bandwidth, the click
program combines the BandwidthRatedSplitter module speci-
fying the bandwidth and the Ofswitch module that implements
OpenFlow1.3. Figure 9 illustrates the application based traffic
classification and QoS control. For example, we can prioritize
the less bandwidth but informative traffic such as mail, SNS,
and voice applications. On the other hand, we can reduce the
video traffic requiring the large bandwidth. This control is of
great importance for the shortage of network resources in the
occurrence of multiple network failures due to the big disaster.



Thus, in disaster situation, traffic control for each application
is realized against the control for all traffic in the conventional
method.

Fig. 9. Illustration of application based traffic control
by using deeply programmable nodes

VIII. CONCLUSION

In this paper, we propose an advanced, fully programmable
network control system that is based on Twitter Failure Detec-
tion, which optimizes traffic for each application automatically
and autonomically. Our contributions in this paper are as
follows.

As a first contribution, we built a system for switching
routes to avoid a disaster area based on Twitter information.
From the experiments, we verified and evaluated this sys-
tem, and two things below are observed in the environment
implemented with four FLARE switches. First, the proposed
system achieves almost full performance of Hardware without
overhead. Second, switching requires approximately 20-30 ms
RTT. Hence, we confirm that our system can be operated with
sufficient performance on a wide area network test bed (JGN-
X[19]) implemented with seven FLARE switches.

The second contribution is to show the capability of the
application based QoS system by using D-plane programma-
bility although the experimental verification is left as the future
study.

As a next step, we plan to extract more detailed situations
of users from Twitter and achieve unique control reflecting
that information. With this work, more advanced and flexible
fine-grained network control shall be achieved.
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