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I. INTRODUCTION

The spread of various sensors and Cloud technologies has
made it easy to acquire life-logs and accumulate data. As a
result, many life-log analysis applications, which transfer data
from sensors, especially cameras to a Cloud and analyze them
in the Cloud, have been developed. Cameras with a server
function called network cameras have become cheap and
readily available for security services and the monitoring of
pets and children from remote locations. In these services, raw
data from sensors, including cameras, are generally transferred
to a Cloud and processed there. However, it is difficult to
transfer raw data from sensors to a Cloud because of the
limitation of network bandwidth between sensors and a Cloud
and privacy issues caused by sending raw sensor data to a
Cloud.
In our study, we split a deep learning processing sequence of
the Caffe framework [1] by defining new layers and performs
distributed processing between a client side and a Cloud side
in a pipeline manner. This approach makes it possible to
protect privacy by sending not raw data but feature values, and
reduce transferred data between a sensor and a Cloud. In the
experiments, we investigate processing times of classification
when the parameters of the network models of CIFAR-10 data
sets [2] are changed using our method.

II. DEEP LEARNING FRAMEWORK CAFFE

Deep learning is widely used for the recognition of im-
ages and sounds. Deep learning makes it possible to au-
tomatically perform feature extraction from data; so, it has
attracted attention for improving the accuracy and speed.
There have been several deep learning frameworks such as
Caffe, TensorFlow [3], and Chainer [4]. Caffe (Convolutional
Architecture for Fast Feature Embedding) is a deep learning
framework developed by the Berkeley Vision and Learning
Center (BVLC). Caffe comprises a combination of modules
with specific functions such as convolution and pooling, and
determines an operation of the whole system through the
communication between the modules. This approach can be
expanded to new data formats and network layers. The core
part of Caffe is written in C++, so, it is possible to use
user-friendly image classification tools, such as the Jupyter
Notebook implemented in Python, using the Caffe C++ API.
In addition, Caffe is capable of high-speed processing because
it corresponds to the GPGPUs, and enabling easy execution

Fig. 1. Proposed pipeline-based distribution method for deep learning.

of experiments using the trained network models provided in
the Caffe package.

III. DISTRIBUTED DEEP LEARNING FRAMEWORK

We propose a pipeline-based distribution method as shown
in Figure 1. We modified Caffe so that we can split a
convolution neural network into two portion, the client side
and the Cloud side. The client side and the Cloud side are
independent processes of Caffe. “Sink” is located at the end
of the client side network, and terminates. “Source” is the
starting point of the Cloud side network. Corresponding Sink
and Source are connected by TCP/IP. Sink receives the data
from the upstream layer, transfers it to the paired Source and
waits for the ACK from the Source. Source receives data from
the Sink, sends ACK and then, forward data to the downstream
layers. Note that the client side prosess and the Cloud side
process perform computation in parallel in a pipeline manner.
Sink specifies the host name and port number of the Cloud
side Source process. When one splits a network, more than
one link could be cut. In such a case, one should set up a
Sink-Source pair for each cut link. The pairs are identified by
the port numbers.
This approach makes it possible to protect the privacy of users
by not sending raw data but rather sending feature values, and
reduce the amount of transferred data between a sensor and a
Cloud for low-bandwidth environments.

IV. EXPERIMENTS

To indicate the effectiveness of the proposed method, we
compare the processing times of classification in three cases as
follows: performing all processing on the client side, distribut-
ing the processing using the proposed method, and performing
all processing on the Cloud side. We also investigate the
learning accuracies when the parameters of the network model
are changed to reduce the amount of data transferred to the
Cloud. After we describe the network models and distribution



Fig. 2. Network model for CIFAR-10.

TABLE I
PARAMETERS DEFINED IN THE CIFAR-10 NETWORK MODEL.

n : num output number of filters
p : pad width of padding
k : kernel size size of each filter
s : stride interval to apply the filters
g : group the number of division of the channels

Fig. 3. Distribution method in the experiments.

methods for CIFAR-10 datasets, we show the experimental
results.

A. Learning accuracies upon varing the number of filters

CIFAR-10 is a dataset in which images of 32× 32 pixels are
classified into 10 categories, and the network model of one of
the datasets is provided by Caffe. The structure of the network
model is shown in Figure 2. The parameters defined in each
layer are shown in Table I. Caffe stores and communicates
data in 4-dimensional arrays as follows: the batch size, the
number of channels and the two-dimensional image size. The
channel parameters accord with the number of filters in the
convolution layer just before that. In the CIFAR-10 network
model, the amount of data becomes smaller after the pool2
layer, so we split the network between the pool2 layer and the
norm2 layer as shown in Figure 3.

We reduce the number of the filters of the conv2 layer
to reduce the amount of transferred data. This may decrease
the accuracy of recognition; so, we investigate the accuracies
when we change the number of filters and thereby reduce the
amount of transferred data. The default value of the number
of filters is 32. The correspondence between the number of

TABLE II
CORRESPONDENCE BETWEEN THE NUMBER OF FILTERS, THE AMOUNT OF

DATA (KB) AND THE ACCURACIES (%) IN THE EXPERIMENTS.

filters 4 8 12 16 20 24 28 32
amount of data 25.6 51.2 76.8 102.4 128.0 153.6 179.2 204.8
accuracy 73.35 76.56 77.16 77.13 77.71 77.63 77.99 78.11

Fig. 4. Comparison of processing time.

filters, the amount of transferred data and the accuracies of
the identification are shown in Table II. This shows that the
accuracies converge when the numbers of filters are small.
Even in the case of the number of filters being 4 at the
conv2 layer, the accuracy is maintained at 73.35%, which is
comparable to the result of the default state, 78.11%, while
the amount of transferred data is one-twelfth of the raw data.
Hence, we can see that high accuracy can be maintained even
if we reduce the amount of transferred data by reducing the
number of filters of the convolution layers.

B. Comparison of Processing Times

We show the effectiveness of the proposed method by
measuring processing times of classification of 1 batch using
two machines as a client side and a Cloud side, respectively.
We use Raspberry Pi as a client side and GPGPU NVIDIA
GeForce GTX 980 as a Cloud side. We set the network
bandwidth between the two machines to 10Mbps in order to
simulate an actual sensor and Cloud network environment.
We compare the three cases; (1) performing all processing in
the client side, (2) distributing processing in the both client and
Cloud sides using the proposed method and (3) performing all
processing in the Cloud side. No data is transferred between
the client and the Cloud in the case (1), while processed and
filtered data are sent to the Cloud in the case (2), and the raw
image data are sent to the Cloud in the case (3). In the cases (2)
and (3), the client and the Cloud synchronously work, so we
use the processing times measured in the client side, including
connection times and waiting times.

Figure 4 shows that the results of the case (2) is faster than
that of the case (1) because of the reduced processing on the
client side. The case (3) are superior to the other cases because
deep learning processing times are longer than the transferred
times. However, in the case (3), the size of transferred data
is larger than the other cases and privacy issues have not



been resolved. Therefore, the proposed distributed processing
method is effective in an actual environment.

V. CONCLUSIONS

We propose a pipeline-based distributed processing for deep
learning and implemented the distributed processing of the
deep learning framework Caffe for the purpose of the sensor
data analysis, considering privacy and the network bandwidth.
We observed that it is possible to maintain a high accuracy
even if we reduce the amount of transferred data from a sensor
to a Cloud by reducing the number of filters of the convolution
layers. When we take into account network bandwidth between
general homes and a Cloud and privacy issues of sensor data,
the effectiveness of the proposed method is proven.
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