
DOI:10.1587/transinf.2014EDP7242

Publicized:2015/01/13

 This advance publication article will be replaced by the finalized version
after proofreading.

IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
A Study of Effective Replica Reconstruction Schemes for the
Hadoop Distributed File System

Asami HIGAI †, Nonmember, Atsuko TAKEFUSA††, Member, Hidemoto NAKADA††, Nonmember,
and Masato OGUCHI†, Member

SUMMARY Distributed file systems, which manage large amounts of
data over multiple commercially available machines, have attracted atten-
tion as management and processing systems for Big Data applications. A
distributed file system consists of multiple data nodes and provides relia-
bility and availability by holding multiple replicas of data. Due to system
failure or maintenance, a data node may be removed from the system, and
the data blocks held by the removed data node are lost. If data blocks
are missing, the access load of the other data nodes that hold the lost data
blocks increases, and as a result, the performance of data processing over
the distributed file system decreases. Therefore, replica reconstruction is
an important issue to reallocate the missing data blocks to prevent such
performance degradation. The Hadoop Distributed File System (HDFS)
is a widely used distributed file system. In the HDFS replica reconstruc-
tion process, source and destination data nodes for replication are selected
randomly. We find that this replica reconstruction scheme is inefficient
because data transfer is biased. Therefore, we propose two more effective
replica reconstruction schemes that aim to balance the workloads of replica-
tion processes. Our proposed replication scheduling strategy assumes that
nodes are arranged in a ring, and data blocks are transferred based on this
one-directional ring structure to minimize the difference in the amount of
transfer data for each node. Based on this strategy, we propose two replica
reconstruction schemes: an optimization scheme and a heuristic scheme.
We have implemented the proposed schemes in HDFS and evaluate them
on an actual HDFS cluster. We also conduct experiments on a large-scale
environment by simulation. From the experiments in the actual environ-
ment, we confirm that the replica reconstruction throughputs of the pro-
posed schemes show a 45% improvement compared to the HDFS default
scheme. We also verify that the heuristic scheme is effective because it
shows performance comparable to the optimization scheme. Furthermore,
the experimental results on the large-scale simulation environment show
that while the optimization scheme is unrealistic because a long time is
required to find the optimal solution, the heuristic scheme is very efficient
because it can be scalable, and that scheme improved replica reconstruction
throughput by up to 25% compared to the default scheme.
key words: HDFS; distributed file system; replica; reconstruction; heuris-
tic; optimization;

1. Introduction

Large amounts of data generated from high-quality sensor
networks, social network services, and high performance
scientific experimental tools such as genome sequencers re-
quire efficient ”Big Data” management and processing in
various fields of commerce and scientific computing such
as high-energy physics and life information sciences. Dis-
tributed file systems, which manage large amounts of data

†Departmentof Computer Science, Ochanomizu University
††National Institute of Advanced Industrial Science and Tech-

nology(AIST)

over multiple commercially available machines, are widely
used for such Big Data processing. To achieve high scal-
ability and availability, a distributed file system consists of
multiple data nodes, each depending on different system re-
quirements, and each data node manages blocks of the data
and their individual replicas. However, it is difficult to op-
erate all of these data nodes without any failure. Some data
nodes may be unstable due to system failure or maintenance.

In a distributed file system, data are replicated, and the
data, including the replicas, are divided into data blocks and
separately stored for reliability and availability. When a data
node failure is detected, the data blocks stored in the data
node are lost, and the access load of the other data nodes,
which hold the lost data blocks, increases. Thus, the per-
formance of data processing over the distributed file system
decreases. Therefore, an important issue is the development
of effective replica reconstruction that reallocates the miss-
ing data blocks to other stable data nodes to prevent such
performance degradation.

The Hadoop Distributed File System (HDFS) [1],
which is a part of the Apache Hadoop [2] project, has been
a widely used open source distributed file system. In the
HDFS replica reconstruction process, source and destination
data nodes used to send and receive a missing data block
are chosen at random. As a result, sending and receiving
processes concentrate on a certain data node. To perform
replica reconstruction effectively, it is necessary to balance
the process workloads of each data node by choosing suit-
able source and destination data nodes.

To address this issue, we propose effective replica
reconstruction schemes that aim to balance workloads of
copying processes between source and destination data
nodes. Our proposed schemes apply to a basic strategy
based on a one-directional ring structure: each data node
receives data blocks from the previous data node and sends
data blocks to the next data node. Based on this strategy, the
proposed schemes, optimization and heuristic aim to min-
imize the difference in the amount of transfer data of each
data node and select a source data node, which holds a miss-
ing data block. In the optimization scheme, we define this
replica reconstruction problem as 0-1 integer programming
and solve the problem with an optimization solver. In the
heuristic scheme, we select the source data node in a heuris-
tic manner.

We have implemented the two proposed schemes in
HDFS and evaluate our proposed schemes in an actual

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

HDFS cluster composed of seven nodes [4]. We also in-
vestigate the performance in a large-scale simulation en-
vironment by using SimGrid [3], a discrete event simula-
tor. From the experiments in the actual cluster, we confirm
that the replica reconstruction throughputs of the proposed
schemes improve by 45% compared to the HDFS default
scheme, and the load of each data node can be balanced by
eliminating the bias of data transfer. We also verify that the
performances of the heuristic and optimization schemes are
comparable. From the experiments in the large-scale sim-
ulation environment, we find that the optimization scheme
is unrealistic because it takes a long time to find the opti-
mal solution. The heuristic scheme is efficient in the large-
scale environment as well because it can be scalable and the
replica reconstruction throughput improves by 25% at most
compared to the default scheme.

This paper is organized as follows: Section 2 de-
scribes the HDFS replica reconstruction scheme and its
problems. Section 3 explains our proposed replica recon-
struction schemes: an optimization scheme and a heuristic
scheme. Sections 4 and 5 evaluate our proposed schemes
on an actual HDFS cluster and a large-scale simulation en-
vironment. Section 6 introduces related work. Finally, we
state our conclusions in Section 7.

2. Replica Reconstruction for HDFS

2.1 Node Decommission and Deletion for HDFS

HDFS is a clone of the Google File System (GFS) [5] de-
veloped by Google. HDFS is based on a master and worker
architecture and consists of a single NameNode and multi-
ple DataNodes. The NameNode stores the metadata for files
and manages all the nodes in the cluster, and the DataN-
odes store data and perform MapReduce-based data pro-
cessing. Each file is divided into blocks, which are the min-
imum units, and the blocks are replicated. Their replicas are
separately stored on the other DataNodes for reliability and
availability.

When a DataNode is removed from a cluster, HDFS
keeps the number of replicas specified in a replication fac-
tor by replicating missing blocks from the DataNode to the
other remaining DataNodes. There are two ways of remov-
ing nodes from a cluster for HDFS: node decommission and
node deletion.

Node decommission is the means by which a DataN-
ode is removed from a cluster after replica reconstruction.
The decommissioned node itself participates in the replica
reconstruction process, the situation in which nodes are re-
moved from a cluster intentionally, for example, to shrink a
cluster scale and initiate the shutdown of an unstable DataN-
ode that frequently causes errors.

Node deletion is the means by which a DataNode is
removed from a cluster before replica reconstruction. The
DataNode itself must not participate in the replica recon-
struction process, the situation in which a DataNode is re-
moved from a cluster unexpectedly, for example, due to

Table 1 Default values of the parameters
relating to the replication process

Name Description Default value

N work
The number of instructions which

the NameNode can transfer at one time 2

N stream
The number of blocks

each DataNode can transfer at one time 2

node failure or trouble with a network connection.

2.2 HDFS Replica Reconstruction

When node decommission or deletion is detected, HDFS
performs replica reconstruction, which copies the data that
the DataNode holds to the other DataNodes. The process
proceeds by units of blocks. NameNode makes all decisions
regarding this block replication scheduling.We shows the
step of the replication reconstruction process as follows:

(1) NameNode detects node decommission or deletion.
(2) NameNode chooses source and destination DataNodes

for replications of the missing blocks and periodically
transfers replication instructions to each source DataN-
ode.

(3) Based on the instructions, the source DataNode trans-
fers the blocks to the specified destination DataNode.

(4) The destination DataNode sends an acknowledgement
to the source DataNode after finishing the copying of
the block, and then the source DataNode sends an ac-
knowledgment to the NameNode.

Step (2)-(4) continues repeatedly until all the blocks that are
missing are replicated.

The number of instructions that the NameNode
transfers to the DataNodes equals the product of the
number of active DataNodes in the cluster and the
REPLICATION WORKMULTIPLIER PERITERATION pa-
rameter. We call this parameterN work in this paper. The
NameNode cannot provide instructions totaling more than
this value. This scheduling process and the data transmis-
sion process are performed in parallel. The number of data
blocks that each DataNode can transfer to the destination
DataNode without receiving an acknowledgement equals
thedfs.max-repl-stream parameter. We call this pa-
rameterN stream in this paper.N work is a hard-coded
parameter in FSNamesystem.java of the ReplicationMonitor
package.N stream is a property we can specify explicitly.
The default values of these parameters are shown in Table 1.

2.3 HDFS Replica Reconstruction Issue

When all DataNodes belong to the same rack, NameNode
randomly selects both a source DataNode from the DataN-
odes that hold a copy of the missing blocks and a destina-
tion DataNode that does not hold the block. This replica re-
construction scheme may cause a concentration of the data
transfer process on a few DataNodes. To clear this concern,
we investigated the disk I/O throughput of each DataNode
and the number of blocks that each DataNode received in the

HIGAI et al.: A STUDY OF EFFECTIVE REPLICA RECONSTRUCTION SCHEMES FOR THE HADOOP DISTRIBUTED FILE SYSTEM
3

HDFS replica reconstruction process using an HDFS cluster
that consists of a single NameNode and six DataNodes con-
nected by a Gigabit Ethernet switch. We use node deletion
as the method for removing a DataNode from the cluster. In
this experiment, the block size and replication factor are 64
MB and three, respectively.

We acquired the disk I/O throughput every one second
using the Linuxiostat command from all the DataNodes
and calculated the simple moving averages of five seconds.
We then counted the number of blocks that each DataNode
received in every second. This information is derived from
the Hadoop-$user-datanode.log files in each DataNode. The
aggregated disk I/O throughput of the five remaining DataN-
odes is shown in Figure 1. The vertical axis represents the
disk I/O throughput in MB/sec and the horizontal axis rep-
resents the time in sec. The number of blocks that each
DataNode received is shown in Figure 2. The vertical axis
represents the number of blocks and the horizontal axis rep-
resents the time in sec.N stream is two as described in 2.2;
thus, it seems to be an ideal state in terms of load balancing,
in which each DataNode is receiving two blocks during the
experiment.

However, Figure 2 shows that the numbers of blocks
each DataNode is receiving are quite different and unstable.
In the time period from 80 to 100 seconds, the number of
blocks received by DataNode5 increases, that is, the desti-
nation DataNodes to be replicated are concentrated. At this
time, the aggregated disk I/O throughput of all DataNodes
decreases, and the overall replication process is stagnating.
These results show that replica reconstruction with the de-
fault scheme for HDFS is inefficient because of unbalanced
sending and receiving processes.

The default random scheme in the original HDFS is ex-
pected not only for balancing data transfer during recovery,
but also for increasing data availability, balancing disk space
usage between nodes, and improving the data processing
performance during the normal operations of read/writes.
However, in practice, we verified that unnecessary collisions
occurred and the performance decreased during replica re-
construction because of the biased data transfer. Therefore,
data availability, data locality and disk utilization of the de-
fault random scheme are not good due to this biased data
transfer. These problems are resolved with the proposed
scheme explained in the following section.

3. Proposal for an Effective Replica Reconstruction
Scheme

To solve the replica reconstruction issue with the HDFS de-
fault scheme described in the previous section, it is nec-
essary to balance the process workloads of each DataN-
ode by choosing source and destination DataNodes prop-
erly. Therefore, we propose a scheduling strategy for replica
reconstruction that aims to achieve efficient processing by
choosing source and destination DataNodes based on a one-
directional ring structure and balancing the workload. We
propose two schemes: an optimization scheme and a heuris-

0

100

200

300

400

500

0 50 100 150 200

th
ro

ug
hp

ut
 [M

B/
se

c]

!me [sec]

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Fig. 1 Aggregated disk I/O throughput of five DataNodes.

0

2

4

6

8

0 50 100 150 200

th
e

nu
m

be
r

of
 b

lo
ck

s
!me [sec]

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Fig. 2 The number of blocks each DataNode received.

tic scheme. In the optimization scheme, we define this
replica reconstruction problem as 0-1 integer programming
and solve the problem with an optimization solver. In the
heuristic scheme, we select the source data node in a heuris-
tic manner.

3.1 Overview of the Basic Strategy

All DataNodes are assumed to be in the same rack. DataN-
odes are arranged in a ring structure, and each DataNode
transfers data in one direction based on the ring structure
shown in Figure 3. In this manner, the destination DataNode
is always the next DataNode after each source DataNode in
the ring structure. This one-directional ring strategy enables
us to maintain a constant number of blocks that each DataN-
ode is sending and receiving even if the transfer timing of
each block is different. Further, because of the ring struc-
ture, the destination DataNode is determined uniquely by
determining the source DataNode. Therefore, when choos-
ing the source DataNode from which to send the missing
blocks, our proposed scheme requires only the number of
blocks that each DataNode sends to be equal to eliminate
the bias of the sending and receiving process.

In replica reconstruction with the HDFS default
scheme, the scheduling and data transfer are carried out in
parallel. In our replica reconstruction with our proposed
scheme, data transfer is carried out after the scheduling of
all of the replicas that are missing is completed. This goal
can be realized by specifying a sufficiently large value to
N work described in section 2.2.

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 3 DataNodes arranged in a one-directional ring structure

3.2 Optimization Scheme

We formulate the replica reconstruction problem as 0-1 in-
teger programming in the replication scheduling strategy we
proposed in section 3.1. As described in section 3.1, all
DataNodes are arranged in a one-directional ring structure
with transfer of missing blocks to the next DataNode. The
objectiveof this replica reconstruction problem is to equal-
ize the number of blocks that each DataNode sends, that is,
to minimize the difference in the number of blocks that each
DataNode sends.

We define the symbols. The sets of DataNodei and
the sets of blockj that are required to be replicated are
denoted byD and B, respectively. The total number of
DataNodes, the total number of blocks that are required to
be replicated, and the replication factor are denoted byNdn,
Nb, andNreplica (≥2), respectively. The average number of
blocksNavg, which each DataNode sends, equalsNb/Ndn.
The current block positions are represented by the matrix
Currenti,j (i ∈ D, j ∈ B). If DataNodei holds the block
j, Currenti,j equals1, otherwiseCurrenti,j equals0.
The adjacency of DataNodes is represented by the matrix
Adjfrom,to (from, to ∈ D). If DataNodefrom can send to
DataNodeto, Adjfrom,to equals1. Otherwise,Adjfrom,to

equals0. The scheduling results of replica reconstruction
are denoted by the variableXfrom,to,j . If DataNodefrom
sends a block to DataNodeto for replication,Xfrom,to,j be-
comes 1. Otherwise,Xfrom,to,j becomes0. zi is the vari-
able that is used to minimize the difference in the number of
blocks that each DataNodei sends. Now, replica reconstruc-
tion scheduling based on the one-directional ring structure is
formulated as follows.

The optimization scheme solvesXfrom,to,j , satisfy-
ing the above formulation and employing the result for
replica reconstruction scheduling. Objective function (1)
minimizes the difference in the number of blocks that each
source DataNode transfers. Equation (2) definesAlli,j , that
is, the placement of all blocks after transfer. Constraint (3)
states that the same block must not be arranged in the same
DataNode in the placement of blocks after transfer. Con-
straint (4) states the total number of replicas of each block
must equalNreplica. Constraint (5) statesXfrom,to,j is 0
or 1. Constraint (6) states that the source DataNode has the
block to transfer. Constraint (7) states that DataNodefrom
and DataNodeto are in the adjacency that DataNodefrom
can transfer to DataNodeto in the one-directional ring. If

Minimize
X

i∈D

zi (1)

Subject to

Alli,j = Currenti,j +
X

from∈D

Xfrom,i,j

∀i ∈ D,∀j ∈ B (2)

Alli,j ≤ 1, ∀i ∈ D, ∀j ∈ B (3)
X

i∈D

Alli,j = Nreplica, ∀j ∈ B (4)

Xfrom,to,j ∈ {0, 1}, ∀from, ∀to ∈ D, ∀j ∈ B (5)

Currenti,j −
X

to∈D

Xi,to,j >= 0

∀i ∈ D, ∀j ∈ B (6)
X

j∈B

Xfrom,to,j <= M · Adjfrom,to

∀from, ∀to ∈ D (7)
X

j∈B

Xfrom,to,j − Navg ≥ −zi

∀from, ∀to ∈ D (8)
X

j∈B

Xfrom,to,j − Navg ≤ zi

∀from, ∀to ∈ D (9)

zi ≥ 0, ∀i ∈ D (10)

there is no adjacency between DataNodefrom and DataN-
odeto, the number of blocks that DataNodefrom can trans-
fer to DataNodeto is 0. Otherwise, it is a positive value.M
is a sufficiently large value, which does not exceed the to-
tal number of blocks, so we setM to Nb here. Constraints
(8), (9) state the lower bound and the upper bound of the
difference between the number of blocks and the average
number of blocksNavg, respectively. Constraint (10) states
zi is greater than or equal to 0.

3.3 Heuristic Scheme

It is impractical to implement the optimization scheme be-
cause it generally takes a long time to find the optimal solu-
tion. Thus, we propose a heuristic scheme to obtain replica
reconstruction scheduling results. The heuristic scheme
aims to equalize the number of blocks that each DataN-
ode transfers. We describe the procedure below.First,
we define the symbols. The sets of DataNodei and the
sets of blockj required to be replicated are denoted byD
andB, respectively. As for the blockj (j ∈ B), DataN-
odes which hold the remaining blockj are belonging to the
list Candidatesj The scheduling priority is denoted by the
variablePriorityj . Priorityj equals to the number of el-
ements in listCandidatesj . Smaller number ofPriorityj

means higher priority. The total number of times DataNode
i has been chosen as the source DataNode is denoted by the
variableCounti.

(1) Arranged all DataNodes in a ring logically like we

HIGAI et al.: A STUDY OF EFFECTIVE REPLICA RECONSTRUCTION SCHEMES FOR THE HADOOP DISTRIBUTED FILE SYSTEM
5

mentioned in section 3.1.
(2) Execute the following process (2-1) and (2-2) for all

the blocks required to be replicated.
As for the blockj,

(2-1) For the DataNodei that is includedCandidatesj ,
if the next DataNode in the ring structure is in-
cludedCandidatesj , that is the next DataNode
already holds the blockj, the DataNodei is ex-
cluded from theCandidatesj .

(2-2) Assign the number of the elements inCandidatesj

to Priorityj .

(3) Group by the number ofPriorityj and after that sort
in descending order of the number ofPriorityj .

(4) Execute for all of the blocks sorted. As for the blockj,
choose the DataNode with the minimumCounti from
the Candidatesj as the source DataNode and incre-
ment theCounti. As a result, the destination DataN-
ode is decided uniquely in the next DataNode in a ring
structure.

Step (3), (4) mean that the blocksj which the
source DataNode is decided uniquely are scheduled first
in the process, and next, the blocksj which are able to
choose the DataNode with the minimumCounti from the
Candidatesj as the source DataNode are scheduled. By
doing so, it is possible to balance the total number of times
each DataNode has been chosen as source DataNode effec-
tively. In step (1), every time replica reconstruction occurs,
the logical ring structure is reconfigured. Therefore there is
no possibility that data arrangement is biased even if multi-
ple replica reconstructions occur. In addition, our proposed
scheme has the probabilistic aspects in terms of the config-
uration of logical ring structure, that is it is not necessarily
determinism.

We show an example in the case that the replication
factor is set to three and the number of DataNodes is five.
Figure 4 shows a logical ring structure of DataNodes(d1,
... , d5 ∈ D) and the arrangement of some blocksjn and
jn + 1(jn, jn + 1 ∈ B) required to be replicated. As for
the blockjn, Candidatesjn is {d1, d3} andPriorityjn

is 2. As for the blockjn + 1, Candidatesjn+1 is {d5}
andPriorityjn+1 is 1. DataNoded4 is excluded from the
Candidatesjn+1 because DataNoded5 that is the next one
of DataNoded4 holds the blockjn+1. The blockjn+1 is
scheduled and after that the blockj is scheduled because
scheduling is executed in decending order of the number
Priority. As for the blockjn + 1, theCandidatesjn+1

includes only DataNoded5 so DataNoded5 is chosen as the
source DataNode and the DataNoded1 which is the next
node of DataNoded5 is decided as the destination DataN-
ode uniquely. Next, as for the blockjn, here we assume that
Count of DataNodes which are included inCandidatesjn,
areCountd1 = 10 andCountd3 = 8 respectively. In this
case, DataNoded3 is chosen as the source DataNode, and
DataNoded4 is decided as the destination DataNode, which
is the next node of DataNode3.

Fig. 4 Example of the arrangement of DataNodes and blocks

Table 2 HDFS cluster node specifications

OS Linux 2.6.32-5-amd64 Debian GNU/Linux 6.0.4
CPU Quad-Core Intel(R) Xeon(R) CPU @ 1.60GHz
Main Memory 2 GB
HDD 73GB SAS× 2(RAID0)
RAID Controller SAS5/iR
Network Gigabit Ethernet

4. Evaluation Experiments in an actual cluster

We implemented both the optimization scheme and the
heuristic scheme into the replica reconstruction module in
HDFS. To evaluate the performance of the replica recon-
struction with each scheme, we measure the following:

(1) Replica reconstruction throughput
(2) The number of blocks each DataNode transfers

(1) indicates the aggregation data transfer rate among
DataNodes for the reconstruction.(2) examines the bias of
the volume of processing for sending and receiving.

We used seven nodes on which we installed Hadoop-
1.0.3 on an actual cluster.Although the latest implemen-
tation is Hadoop-2.5.1, this version we used is almost the
same with the latest one in terms of the replica placement
policy and the method of replication. One of these nodes
is designated as a NameNode and the rest are DataNodes.
Table 2 shows the specifications of the nodes we used for
the measurements. All nodes are connected by a Gigabit
Ethernet and belong to a single rack.

For each scheme (i.e., the default scheme, heuristic
scheme, and optimization scheme), we examined the perfor-
mance of replica reconstruction at node deletion for block
sizes of 16, 32, 64, 128, and 256 MB. We define the replica
reconstruction throughput as follows.

Replica reconstruction throughput[MB/sec]

=
the amount of data that the deleted DataNode holds[MB]

execution time needed for replica reconstruction to complete[sec]

(11)

We are using the GLPK[6] optimization solver, which
was provided free of charge for the optimization scheme.
We copied five files of approximately 10 GB to HDFS from
the local disk using theput option in each trial. The repli-
cation factor is set to three, so the total amount of data, in-
cluding replicas in HDFS, is approximately 150 GB, which

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Table 3 Measurement parameters

Block size 16, 32, 64, 128, 256 MB
The number of DataNodes six, including the deleted one
Replication factor 3
The amount of data in HDFS 50 GB*3(replication factor)

corresponds to approximately 25% of the capacity of the en-
tire cluster. Table 3 shows the parameters we used for the
measurements. The amount of data each DataNode holds is
balanced by a balancer that is implemented as a Hadoop dae-
mon before each trial. Therefore, in each trial, the amount
of data each DataNode holds is almost the same, but the
placement of each data item differs.

4.1 Replica Reconstruction Throughput

Figure 5 shows the replica reconstruction throughput at node
deletion with each scheme. The vertical axis represents the
replica reconstruction throughput in MB/sec, and the hori-
zontal axis represents the block size. When the block size is
more than 64 MB, the throughput is improved by the pro-
posed schemes. The throughput of the heuristic scheme
shows a 44% improvement compared to the throughput of
the default scheme, and the throughput of the optimiza-
tion scheme shows a 45% improvement. When the block
size is smaller, such as 16 or 32 MB, the throughput of
each scheme does not differ. As we mentioned in section
2.2, this difference occurs because the amount of data that
each DataNode can transfer without receiving an acknowl-
edgment from the destination DataNodes is limited by the
number of blocks,N stream. Therefore, in the case where
block size is smaller, the amount of data to be processed at
one time is less. In such a case, the DataNodes finish the
processing instructed from the NameNode sooner and are
in the idle state, waiting for the instructions of the replica
reconstruction to be sent periodically from the NameNode.
There is still available disk bandwidth.When the DataN-
odes have enough volume of data to write to their disk,
our proposed schemes achieve better throughput because the
number of instructions distributed among the DataNodes is
well-balanced compared with the default case. However,
when the DataNodes do not have enough volume of data,
they are often in the idle state and disk bandwidth is not oc-
cupied enough with write data, and throughput of our pro-
posed schemes is not increased in such a case.

To investigate the effectiveness of the proposed
schemes in the case where the processing load is heavy even
though block size is small, we examined the replica recon-
struction at node deletion by changingN stream as shown
in Table 4. The replica reconstruction throughput of the
experiments is shown in Figure 6. The vertical axis repre-
sents the replica reconstruction throughput in MB/sec, and
the horizontal axis represents the block size and the value of
N stream. In the case where the process load is heavy even
though block size is small, the throughput of the proposed
schemes also shows improvement, as shown in Figure 6.
Figures 5 and 6 show that the replica reconstruction through-

0

20

40

60

80

100

120

140

160

180

200

16MB 32MB 64MB 128MB 256MB

th
ro

ug
hp

ut
 [

M
B

/s
ec

]

block size

Default shceme Heuris!c scheme Op!miza!on schemescheme

Fig. 5 Replica reconstruction throughput at node deletion with each
scheme

Table 4 The value ofN stream

Block size N stream
16MB 8
32MB 4

0

20

40

60

80

100

120

140

160

180

200

16MB_2 16MB_8 32MB_2 32MB_4

th
ro

ug
hp

ut
 [

M
B

/s
ec

]

block size and N_stream

Default shceme Heuris!c scheme Op!miza!on schemescheme

Fig. 6 Replica reconstruction throughput at node deletion in the case of
changingN stream

put of the heuristic scheme is comparable to the replica re-
construction throughput of the optimization scheme. There-
fore, the heuristic scheme is shown to be sufficiently effec-
tive in this experimental environment.

Figures 7 and 8 show the time series data of the disk
I/O throughput of each DataNode and the number of blocks
that each DataNode received with the heuristic scheme. In
Figure 7, the vertical axis represents the disk I/O throughput
in MB/sec and the horizontal axis represents time in sec. In
Figure 8, the vertical axis represents the number of blocks
received and the horizontal axis represents time in sec. As
indicated in Figures 1 and 2, there was a large difference in
the number of blocks that each DataNode received, and the
disk I/O throughput was unstable in the case of the default
scheme. However, with the heuristic scheme, the number of
blocks each DataNode received is stable at 2 or less, and the
disk I/O throughput of each DataNode is relatively equally
high and stable.

4.2 The number of blocks each DataNode transfers

Taking into consideration of all blocks required to be

HIGAI et al.: A STUDY OF EFFECTIVE REPLICA RECONSTRUCTION SCHEMES FOR THE HADOOP DISTRIBUTED FILE SYSTEM
7

0

100

200

300

400

500

0 50 100 150 200

th
ro

ug
hp

ut
 [

M
B

/s
ec

]

!me (sec)

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Fig. 7 Aggregated disk I/O throughput of five DataNodes with the
heuristic scheme.

0

2

4

6

8

0 50 100 150 200

th
e

nu
m

be
r

o
f

bl
o

ck
s

!me (sec)

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Fig. 8 The number of blocks that each DataNode received with the
heuristic scheme.

replicated, there are a large number of combinations of the
source and the destination DataNodes because the source
DataNode is chosen from two DataNodes which hold the
remaining blocks under the assumed condition (replication
factor is set to three). The amount of transferred data
each DataNode processes can be balanced by deciding the
DataNode in a one-directional ring structure as a destination
DataNode uniquely. Therefore, assuming a ring structure
is reasonable for a well-balanced data transfer. However,
even though both the optimization scheme and the heuristic
scheme use the same ring structure, a result of the heuristic
scheme is not the same as that of the optimization scheme
but an approximate answer.
Table 5 shows the number of blocks that each DataNode
transfers and the standard deviation, in the replica recon-
struction at node deletion with each scheme. As an exam-
ple, we pick up a single trial with a block size of 64 MB
here. Because the data placement is different in each trial,
the number of blocks that each DataNode transferred and
the standard deviation are also different slightly different
in each trial. Table 6 shows the average of the coefficient
of variations of all trials with each scheme.It can be seen
from Table 6 that the number of blocks that each DataN-
ode transfers is balanced, and the bias of volume of pro-
cessing for sending and receiving is eliminated by our pro-
posed schemes. The heuristic scheme is also comparable to
the optimization scheme in terms of the bias of sending and
receiving processing; and therefore, we confirmed that the
heuristic scheme is effective.

Table 5 The number of blocks that each DataNode transfers and the
standard deviation.

Default
scheme

Heuristic
scheme

Optimization
scheme

DataNode1 78 78 78
DataNode2 79 79 79
DataNode3 84 78 79
DataNode4 85 79 79
DataNode5 67 79 78

Standard deviation 6.406 0.490 0.490

Table 6 The average of the coefficient of variations of all trials.

Default
scheme

Heuristic
scheme

Optimization
scheme

The average of
the coefficient of variations 0.0945 0.0079 0.0054

Table 7 Measurement parameters

The number
of DataNodes

The number
of blocks

The number of DataNodes changes
where

the number of blocks is fixed
5-25 800

The number of blocks changes
where

the number of DataNodes is fixed
10 800-4000

5. Evaluation Experiments in a large-scale environ-
ment by simulation

We evaluate the performance of the proposed schemes by
simulation while the numbers of nodes and blocks are in-
creasing. We measure the following:

(1) The computation time required to find the optimal so-
lution

(2) Replica reconstruction throughput and the number of
blocks each DataNode transfers

(1) examines whether if the optimization scheme is practi-
cal. (2) investigates whether if the heuristic scheme is scal-
able.

5.1 The computation time required to find the optimal so-
lution

The optimization scheme is considered impractical because
it generally takes a long time to find the optimal solution.
Therefore, to evaluate the practicality of the optimization
scheme, we examine the computation time required to find
the optimal solution of this 0-1 integer programming prob-
lem by changing the numbers of DataNodes and blocks in
the simulation. Table 7 shows the numbers of DataNodes
and blocks we used: 800 blocks corresponds to the amount
of data shown in Table 3 when the block size is set to 64 MB.
The replication factor is set to 3, as in the previous section.

Figure 9 and 10 show the computation time required to

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25

ex
ec

u
�

o
n

 �
m

e
[s

ec
]

the number of nodes

Fig. 9 Fixed number of blocks.

0

1

2

3

4

5

6

800 1600 2400 3200 4000

ex
ec

u
�

o
n

 �
m

e
[s

ec
]

the number of blocks

Fig. 10 Fixed number of nodes.

find the optimal solution of the formulated 0-1 integer pro-
gramming problem. Figure 9 shows the computation time
when the number of DataNodes changes but the number of
blocks is fixed. Figure 10 shows the computation time when
the number of blocks changes but the number of DataNodes
is fixed. From Figures 9 and 10, we confirm that the com-
putation time needed to find the optimal solution increases
exponentially with an increase in the number of nodes and
linearly with an increase in the number of blocks.

Here we define the number of DataNodes asd, the
number of all blocks asball and the number of blocks to
be replicated asbreplica. The complexity of the optimiza-
tion scheme isO(ball · d2). The complexity of the default
scheme and the heuristic scheme isO(breplica). In practice,
because HDFS is used in a large-scale environment such as
terabyte to petabyte scale, the number of nodes and the num-
ber of blocks are also very large. Therefore, we find that the
optimization scheme cannot scale. The heuristic scheme is
very efficient because it is possible to achieve replica recon-
struction throughput comparable to that of the optimization
scheme with a calculation complexity ofO(breplica).

5.2 Replica reconstruction throughput and the number of
blocks each DataNode transfers

In the large-scale environment, we find that while the opti-
mization scheme is impractical, the calculation complexity
of the heuristic scheme is comparable to that of the default
scheme. Therefore, we evaluate the scalability of the replica
reconstruction processes by varying the number of DataN-
odes for the default scheme and the heuristic scheme using
simulations.

We use SimGrid [3], which is a discrete event simulator

DataNode A1 DataNode A2

link A1 link A2

link

A1_disk

link

A2_disk

link routerA

Fig. 11 Network topology

Table 8 Measurement parameters

The number of DataNode 6, 8, 16, 32
Block size 67MB
Replication factor 3
The number of blocks
the deleting DataNode holds 80*(The number of DataNodes-1)

Network bandwidth 125 MB/sec
Network latency 0.1msec
Disk performance 67 MB/sec

for distributed systems. Because SimGrid has not supported
a disk process simulation, additional links with bandwidth
equal to disk I/O throughputs are configured in the simu-
lation environments, as shown in Figure 11. The table 8
shows the measurement parameters we used. The number
of DataNodes is set to 6, 8, 16 or 32 including the deleted
node. The case in which the number of DataNodes is set to
6 is compared with the evaluation in the actual cluster. The
block size is set to 67 MB because the default block size in
HDFS is 64 MB, and the transfer size including the header is
67 MB. The number of blocks the deleted DataNode holds is
set to be proportional to the number of DataNodes to equal-
ize the average number of blocks each DataNode transfers,
regardless of the number of DataNodes. Disk performance
is set to 67 MB/sec. We obtained this value when examin-
ing the performance of the one-to-one replica reconstruction
process in the preliminary experiment in the actual environ-
ment.Figure 12 shows the replica reconstruction throughputs
at node deletion. The vertical axis represents the replica re-
construction throughput in MB/sec, and the horizontal axis
represents the block size.Figure 12 shows thatthe replica
reconstruction throughputs for the both schemes increase
when the number of DataNodes increases. The throughput
of the heuristic scheme improves 25% at most compared to
the default scheme.

Table 9, 10 show that the standard deviation of the
number of blocks each DataNode transfers and the aver-
age of the coefficient of variations of all trials in the case
of the actual environment using six DataNodes we evaluated
in section 4 and the large-scale environment using thirty-two
DataNodes respectively. The values of the large-scale envi-
ronment are almost same as those of the actual one. There-
fore, we find that both schemes are scalable and the heuristic
scheme is effective in the large-scale environment.

HIGAI et al.: A STUDY OF EFFECTIVE REPLICA RECONSTRUCTION SCHEMES FOR THE HADOOP DISTRIBUTED FILE SYSTEM
9

0

200

400

600

800

1000

1200

6 8 16 32

th
ro

u
gh

p
u

t
[M

B
/s

ec
]

The number of DataNodes

Default scheme

Heuris!c scheme

Fig. 12 Replica reconstruction throughputs

Table 9 The comparison of the standard deviation of the number of
blocks each DataNode transfers.

Default scheme Heuristic scheme
actual environment 6.406 0.490

large-scale environment 8.274 0.775

Table 10 The comparison of the average of the coefficient of variations
of all trials.

Default scheme Heuristic scheme
actual environment 0.0945 0.0079

large-scale environment 0.1007 0.0098

6. Related Work

6.1 Replication strategies

Many replication strategies for replica management have
been proposed. In general, data are replicated, and their
replicas are stored on different data nodes for reliability and
availability. It is important to select the replication factor
properly and to determine where to place each replica.

Rahman et al. [7], Wang et al. [8], and Sato et al. [9]
proposed replication strategies based on file clustering for
Grid file systems. In the clustering strategy described in [9],
files are grouped according to each data processing based
on the notion that the clustered files will be simultaneously
used by another data processing. Then, the replication times
for each file are minimized under the given storage capacity
limitations. The experiments showed the proposed strategy
was more efficient than a strategy that did not group related
files.

Sashi et al. [10] proposed a replication strategy for
a region-based framework based on the popularity of files
over a geographically distributed Grid environment. By cal-
culating the access frequency of each file, they determine
in which region the replicas must be placed and how many
replicas must be placed based on network bandwidth and
response time between regions. When filef is created, the
access frequency is calculated for each region, and replicas
are placed in the regions in a descending order of the ac-
cess frequency. Furthermore, the site within the region in
which the file must be placed is determined by considering

the number of requests and the response time. Therefore,
this strategy increases the data availability and also reduces
the number of unnecessary replications.

Tjioe et al. [11] proposed a replication strategy based
on a dynamic file assignment according to access load. First,
they assign files, which are sorted according to file size, to
disks in a round-robin fashion to distribute the load of all
files evenly across all disks. Then, creation and deletion
of replicas occur according to the load of all files and the
load on each disk. From the experiments, load balancing can
be achieved in an environment where user access patterns
change significantly.

Wenfeng et al. [12] proposed a replication strategy
based on the response time of each request. Their strat-
egy determines replica allocation and the number of repli-
cas for each data to satisfy the requirement of response time
for acquiring each replica from every node and minimize the
replica degree, the number of replicas for each data, at the
same time. Compared to other strategies, the proposed strat-
egy could satisfy the response time requirements of every
node in a single request and also reduce the number of repli-
cas. Moreover, the proposed strategy maximally reduced the
total request response time and improved the overall system
performance.

As described above, most of the replication strategies
mainly consider an access time, a storage capacity, and a
replication time. However, the overhead of a replication pro-
cess on each node itself is not adequately considered.

6.2 Network topology

Felix et al. [13] investigated distributing an OS image to all
machines efficiently in a large-scale cluster. They investi-
gated three logical network topologies: a star topology, an n-
ary spanning tree, and a multi-drop-chain. Figure 13 shows
each network topology. The blue nodes indicate the source
of each data transfer, and the green nodes denote a switch
(a connection point between all nodes). The above images
of each topology show the logical connectivity of all nodes.
From the evaluation experiments, the star topology suffered
from heavy link congestion at the server link in the case of
an increase in the number of nodes. The n-ary spanning
tree could not replicate data into multiple streams efficiently
enough because of the limitation of network bandwidth. The
multi-drop-chain could replicate data regardless of increas-
ing nodes and network bandwidth. Therefore, these authors
concluded that the multi-drop-chain topology was efficient
to adopt a large-scale cluster.

Therefore, we assume that data transfer based on the
one-directional ring structure we applied is effective.

7. Conclusion

In replica reconstruction with the default scheme for HDFS,
inefficient processing occurs during the replica reconstruc-
tion because the processing is concentrated on some of the
DataNodes, even if the source and destination DataNodes

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

x x x

star n-ary spanning tree mul!-drop-chain

: source : switchx

Fig. 13 Network topologies described in [13]

are chosen at random. To address this issue, we proposed
two effective replica reconstruction schemes intended to bal-
ance the workloads of each DataNode by properly select-
ing source and destination DataNodes. Our proposed repli-
cation scheduling strategyasuumes that DataNodes are ar-
rangedin a ring, and data blocks are transferred based on a
one-directional ring structure to minimize the difference in
the amount of data transfer at each DataNode. Based on this
strategy, we proposed two replica reconstruction schemes:
an optimization scheme and a heuristic scheme. We have
implemented the proposed schemes in HDFS and evaluated
them on an actual HDFS cluster and a large-scale simulation
environment. From the experiments, we confirmed that the
both proposed replica reconstruction schemes outperformed
the HDFS default scheme, the heuristic scheme was compa-
rable to the optimization scheme, and the heuristic scheme
was very efficient in a large-scale environment.

In this study, we have focused on eliminating the bias
of data transfer and tackled the challenge of identifying ef-
fective replica reconstruction schemes. However, in prac-
tice, the replica reconstruction process is performed in the
background, so it is necessary to avoid the situation in which
the replica reconstruction process occupies computing and
network resources and reduces the performance of the fore-
ground process. Therefore, as future work, we will attempt
to perform the replica reconstruction effectively while min-
imizing the influence on the foreground process. In addi-
tion, we will attempt to extend our proposed schemes for the
replica reconstruction in which HDFS is operated by multi-
ple racks because HDFS is composed of multiple racks in
larger-scale environments.

References

[1] Dhruba Borthakur. ”HDFS Architecture,” 2008 The Apache Soft-
ware Foundation.

[2] Tom White, Hadoop: The definitive guide, trans. Ryuji Tamagawa.
O’Reilly JAPAN, 2010.

[3] SimGrid. http://simgrid.gforge.inria.fr/
[4] Asami Higai, Atsuko Takefusa, Hidemoto Nakada, Masato Oguchi,

”A Study of Effective Replica Reconstruction Schemes at Node
Deletion for HDFS,” 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp.512-521, Chicago, IL, USA

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (October
2003), ”The Google File System,” 19th Symposium on Operating
Systems Principles (conference), Lake George, NY: The Associa-

tion for Computing Machinery, CiteSeerX: 10.1.1.125.789, retrieved
2012-07-12.

[6] GLPK. http://www.gnu.org/software/glpk/.
[7] Rashedur M.Rahman, Ken Barker, Reda Alhajj, ”Study of Differ-

ent Replica Placement and Maintenance Strategies in Data Grid,” In
Proceedings of the Seventh IEEE International Symposium on Clus-
ter Computing and the Grid, pp.171-178, 2007.

[8] Y. Wang and D. Kaeli, ”Load balancing using grid-based peer-to-
peer parallel I/O,” In Proceedings of IEEE International Conference
on Cluster Computing, pp.1-10, 2005.

[9] Hitoshi Sato, Satoshi Matsuoka, and Toshio Endo, ”File Clustering
Based Replication Algorithm in a Grid Environment,” In Proceed-
ings of the 9th IEEE International Symposium on Computing and
the Grid (CCGrid2009), pp.204-211, Shanghai, China, May 2009.

[10] K. Sashi, Antony Selvadoss Thanamani, ”A New Replica Creation
and Placement Algorithm for Data Grid Environment,” International
Conference on Data Storage and Data Engineering, pp.265-269,
2010.

[11] J. Tjioe, R. Widjaja, A. Lee, and T.Xie, ”DORA:A Dynamic File
Assignment Strategy with Replication,” International Conference on
Parallel Processing 2009.

[12] W.F. Wang, W.H. Wei, ”A Dynamic Replica Placement Mecha-
nism Based-on Response Time Measure,” Proc. of IEEE Interna-
tional Conf. on Communications and Mobile Computing, pp.169-
173, 2010.

[13] Felix Rauch, Christian Kurmann, Tomas M.Stricker, ”Partition Cast
―Modelling and Optimizing the Distribution of Large Data Sets in
PC Clusters,” Euro-Par 2000, LNCS 1900, pp.1118-1131, 2000.

Asami HIGAI Asami Higai received B.E.
from Ochanomizu University in 2013. She is
currently a student of master’s program in the
Department of Computer Science at Ochano-
mizu University. Her research field is paral-
lel and distributed computing. She is a student
member of IPSJ.

Atsuko TAKEFUSA Atsuko Takefusa re-
ceived B.E., M.E. and Ph.D. (Sci.) from Ochan-
omizu University in 1996, 1998 and 2000, re-
spectively. From 2000 to 2002, she was a JSPS
research fellow (DC2) at the Tokyo Institute of
Technology. She stayed at the University of Cal-
ifornia, San Diego in the United States as a vis-
iting researcher in 2000-2001. She was an assis-
tant professor at Ochanomizu University in 2002
to 2005. She became a researcher at the Na-
tional Institute of Advanced Industrial Science

and Technology (AIST) in 2005. She has been a senior researcher at AIST
since 2013. Her research field is parallel and distributed computing includ-
ing Grid, Cloud and HPC. She is a member of ACM, IPSJ and IEICE.

HIGAI et al.: A STUDY OF EFFECTIVE REPLICA RECONSTRUCTION SCHEMES FOR THE HADOOP DISTRIBUTED FILE SYSTEM
11

Hidemoto NAKADA Hidemoto Nakada
received his Ph.D. degree from the University
of Tokyo in 1995. He joined the Electrotech-
nical Laboratory in 1995, which was merged
into the National Institute of Advanced Indus-
trial Science and Technology (AIST) in 2001.
He also served as a visiting associate professor
at the Tokyo Institute of Technology from 2001
to 2005. His interests lie in the area of paral-
lel / distributed computing, including Grid and
Cloud technologies. He is a member of ACM

and IPSJ.

Masato OGUCHI Prof. Masato Oguchi
received B.E. from Keio University, M.E. and
Ph.D from the University of Tokyo in 1990,
1992, and 1995 respectively. In 1995, he was
a researcher in the National Center for Sci-
ence Information Systems (NACSIS) - currently
known as National Institute of Informatics (NII).
From 1996 to 2000, he was a research fellow at
the Institute of Industrial Science, University of
Tokyo. He stayed at Aachen University of Tech-
nology in Germany as a visiting researcher in

1998 - 2000. In 2001, he became an associate professor at the Research
and Development Initiative in Chuo University. He joined Ochanomizu
University in 2003 as an associate professor. Since 2006, he has been a
professor at the Department of Information Sciences, Ochanomizu Univer-
sity. His research field is in network computing middleware, including high
performance computing as well as mobile networking. He is a member of
IEEE, ACM, IEICE, and IPSJ.

