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ABSTRACT

For the home and office, many life-log analysis applications
for transferring data from cameras and sensors to the cloud
and analyzing the data have been developed. However, be-
cause of limitation of the resources of the cloud and the
network bandwidth between the sensor and the cloud, it
is difficult to execute large load processing, such as video
streaming analysis, in real time on the cloud. Moreover, tak-
ing into account the execution environment from the sensor
to the cloud, it is necessary to set an appropriate degree of
parallelism in the processing from the pre-processing, such
as feature extraction, to the analysis on the information. In
this paper, we propose a video streaming analysis applica-
tion framework for load balancing between sensors and the
cloud, and investigate the performance of the application
in a cluster environment that simulates the sensor and the
cloud. From the experiments, we show that the processing
performance is improved by increasing the number of pro-
cessing threads, and we demonstrate the effectiveness of load
balancing between the sensors and the cloud.
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1. INTRODUCTION

To obtain data from cameras and sensors at home and the
office, such as for the purpose of safety services for children
and the elderly and security, many life-log analysis applica-
tions have been developed. In the case of using the appli-
cations at home, processing on the cloud is needed because
installing servers, storage and analysis at home are difficult.
However when transferring a large amount of sensor data,
including video data, to the cloud, processing in real time is
not possible because of the limitation of the resources of the
cloud and because of the network bandwidth between the
sensors and the cloud. Moreover, for large-capacity stream
data, such as video streaming, it is necessary to perform
high-load processing continuously from feature extraction
to analysis on the information.

As opposed to the method of performing all processing on
the cloud, the paradigm called Fat Client, which provides
server functions to the server on the sensor side (client side)
and reduces the load of processing on the cloud, is useful.
In addition, edge computing, which is aimed at reducing the
response delay of the services and the load of the cloud by
linking a small edge server located near the sensors or users
[1], and Fog Computing, which prevents overconcentration
to the cloud by placing a distributed processing environment
between the cloud and devices [2], are proposed. To perform
video streaming analysis in real time, taking into account
the execution environment from sensors to the cloud, it is
necessary to set an appropriate degree of parallelism for each
process.

In this paper, we develop a video streaming analysis appli-
cation framework for load balancing between sensors and the
cloud, and investigate the performance of the application in



a cluster environment that simulates the sensor and cloud.
This framework is developed using Apache Storm (here-
inafter called Storm), which provides a distributed stream
computing foundation and is able to perform the high-load
processing of video streaming analysis. In evaluation exper-
iments of the performance considering changes of the num-
ber of Bolt threads and load balancing between sensors and
the cloud considering the network bandwidth, we demon-
strate the effectiveness of load balancing between sensors
and the cloud. The average processing time of a tuple does
not change, and the processing performance is improved by
increasing the number of processing threads, although the
interval time from receiving a tuple to receiving the next tu-
ple increase. In the case of the low-bandwidth environment,
the total number of images that can be processed for the
elapsed time is increased by load balancing between sensors
and the cloud, and the distributed processing that links fat
client and the cloud is effective.

This paper is organized as follows: Section 2 describes the
related technology. Section 3 explains the proposed video
streaming analysis application framework. Section 4 eval-
uates the framework. Section 5 introduces related work.
Finally, we conclude in Section 6.

2. RELATED TECHNOLOGY

The video streaming analysis application uses Storm as
the basis of load balancing between the sensors and cloud
and uses on-line machine learning Jubatus for analysis. We
provide a summary of each software below.

2.1 Apache Storm

Storm is a distributed, real-time computing system devel-
oped by Back Type [3]. Storm has been acquired by Twitter
Inc. and is used for real-time analysis of tweets on Twit-
ter. Apache Hadoop performs batch processing on a large
scale, whereas Storm specializes in real-time distributed pro-
cessing. Apache Spark[4] is in the same stream processing
framework. Spark, which performs batch processing, exe-
cutes stream processing as a chain of batch processing for
events received for 1 second. Therefore, the throughput of
Spark is improved, but the processing of Spark is slower than
pure stream processing because of an approximately 0.5 to
2.0 second delay [5].

Storm deploys Topology to Storm clusters and performs
processing. Topology is a network structure that consists of
Spout and Bolt, as shown in Figure 1. Spout is a starting
point to start a flowing stream, and Bolt is the process that
converts the flowing data. Stream is a set of tuples that is
continuously sent, and it is possible to use a standard data
type and a user-defined type for added serialization code as
Stream.

In addition, Storm has two types of modes: Local mode
and Distributed mode. Local mode can execute Storm clus-
ters on a single computer. Distributed mode dynamically
loads and executes balanced processes that are defined in
Topology to multiple nodes on a Storm cluster. We use
the Distributed mode in our study. In Distributed mode,
Nimbus manages the entire Storm cluster, and Supervisor
manages the individual Slave nodes. Zookeeper coordinates
the Storm cluster. We send Topology to Nimbus with a
command, and Workers, which are started by Supervisor,
execute the processing of Spout or Bolt. The number of
Workers is defined when starting Supervisor, and threads

stream

topology

Figure 1. An example of the Storm topology.

designated in the definition in Topology are distributed to
the Workers.

2.2 On-line Machine Learning: Jubatus

Jubatus was developed by Preferred Infrastructure and
NTT SIC, and it is an on-line machine learning framework|[6].
The elements "stream (on-line) processing”, "parallel dis-
tributed processing” and “deep analysis” have a trade-off
relationship, but Jubatus meets the requirements of these
elements. For batch machine learning, servers synchronize
every time a model is updated. The update frequency is
low, so it does not significantly affect performance. On the
other hand, for the distributed processing of on-line ma-
chine learning, the update frequency of the learning model
increases and the synchronization cost increases. Therefore,
the server processing performance deteriorates, and a frame-
work satisfying the three elements at the same time has not
been developed. Usually, UPDATE processing shares data
between servers and updates the learning model. However,
in Jubatus, the data themselves are not shared in UPDATE;,
only the analysis model after the learning of each server is
shared in MIX. The process has to allow for real-time and
large-scale parallel and distributed processing.

Jubatus uses Datum, which is a key-value in analysis pro-
cessing. Datum has three types of values: string data, num-
ber data, and binary data. It is possible to transform mul-
timedia data, such as images and sounds, into binary data.
From these data, the data conversion module of Jubatus
extracts features that are required in machine learning pro-
cessing. The feature vector converter of Jubatus can cus-
tomize the feature extraction process in a JSON file, and we
can use a plug-in for the feature extractor. The plug-in is a
dynamic library file (.so), and it is used by opening a path
with a JSON file.

3. VIDEO STREAMING ANALYSIS APPLI-
CATION FRAMEWORK

In this section, we describe the design overview of the
video streaming analysis application framework that we pro-
pose in this study. Video streaming analysis has three es-
sential steps: (1) getting image data, (2) feature extraction,
and (3) machine learning. To obtain and process all sensor
data on the cloud side, after process (1) on the sensor side,
the sensor data, including a moving image, are sent to the
cloud. Servers on the cloud side perform processes (2) and
(3). However, for load balancing between the sensors and
cloud, part of process (2) is distributed to servers on the
sensor side to reduce the amount of data transfer between
the sensor and cloud servers and to reduce the load of the
cloud servers.

When performing all processing on the cloud side, traffic



(1) Getting Images
Image Data
(2) Feature Extraction
Feature Vector

(3) Analysis

Figure 2. Flow of video streaming analysis applica-
tion framework.

to the cloud is bigger, so performance degradation caused
by the overhead is an issue. When performing processing on
both the sensor side and the cloud side for (2), the amount
of traffic to the cloud is reduced, but the load of feature
extraction on the sensor side becomes large.

3.1 Design of Video Streaming Analysis Ap-
plication Framework

The implemented application is divided into the following
three processes shown in figure 2.

1. Getting Image Data from WEB Camera
2. Feature Extraction using Bag-of-Features

3. Image Classification using Jubatus

We describe the details of each process below.

3.1.1 Getting Image Data from WEB Camera

First, we implement part of getting image data from a
WEB camera on the sensor side, which is the origin of the
data stream. Using OpenCV [7], image data are acquired
by a WEB camera and are stored in the structure. The
structure is transferred to (2) Feature Extraction using the
Bag-of-Features.

3.1.2 Feature Extraction using Bag-of-Features

The next steps are feature extraction and vectorization
of the image data using OpenCV. The vectorized data are
transferred to (3) Analysis in Jubatus.

Bag-of-Features, based on the dictionary data clustering
from the set of local features made from an image to the
features using the K-means method, is a method that uses a
histogram of the number of feature points with the feature
values that belong to each group.

Bag-of-Features extraction in our study is performed as
follows. First, we extract the local features from an image
using OpenCV. Local features have several types. SIFT,
the most common of the types, is a robust feature value
that includes constant rotation and illumination changes,
the scaling. Although the recognition accuracy is a little bit

worse than for SIFT, SURF performs lighter and faster pro-
cessing of the feature point detection. In this study, we use
the SURF feature values as local features. SURF extracts
some of the characteristic points in the image, called the
keypoints. Each keypoint consists of the feature vector of
128 dimensions, but it is difficult to use a feature vector of
the entire image for machine learning because the number of
extracted keypoints varies depending on the image. There-
fore, we cluster the local features and create a dictionary by
considering the center vector of each cluster as the charac-
teristic pattern called a Visual Word. We match the feature
vector group extracted from the image to the Visual Word
using this dictionary and represent the frequency character-
istic pattern features of the entire image using a histogram.
Once the dictionary is created, the number of Visual Words
is constant, so we can convert the feature amount of each
image into vector data of the same size.

Next, we convert the generated vector data to a format
that is processed in Jubatus. As described in Section 2.2,
Jubatus uses the data format called datum. Thus, we con-
vert the generated histogram to datum. We list the format
of each value of the histogram, store it in datum and then
convert the values into data that can be transferred to Ju-
batus. Finally, the system establishes a connection with the
Jubatus server and transfers the datum storing the feature
vector acquired from the image to the Jubatus server.

3.1.3 Image Classification using Jubatus

Various analyses, such as classification, recommendations,
and linear regression, are possible in Jubatus. We per-
form classification learning using Classifier API. By using
the trainAPI before video streaming analysis, Jubatus per-
forms supervised learning in advance. To classify using the
learning result, we use classify API. Datum that is sent to the
Jubatus server is analyzed through the two-step data con-
version of filtering and feature extraction. The filter step
removes information that is unnecessary for learning, and
the feature extraction step extracts features from the fil-
tered data. What elements are removed from the data in
the filter processing, which algorithm is used and how the
feature extraction is weighted are set by a JSON file that
is specified on server startup. We use a default filter and a
given value as the weight in the feature extraction. We se-
lect the Adaptive Regularization of Weight vectors (AROW)
as the algorithm for classification and set the sensitivity pa-
rameters for learning to 1.0. The result from the Jubatus
server is sent to a user.

3.2 Implementation of the Framework using
Storm

We use Storm because the video streaming analysis ap-
plication can perform real-time processing more rapidly by
executing the heavy processing in parallel as necessary. The
processing for (1) that is described in Section 3.1 is imple-
mented as Spout processing, and the processing for (2) and
(3) is implemented as Bolt processing. Distributed process-
ing using the sensor and cloud is achieved by constructing a
Storm cluster that contains servers on the sensor and cloud
sides. In the image data analysis application used in this
study, the data traffic between (1) and (2) is large, and the
load of processing (2) is relatively high. Therefore, as shown
in Figure 3, the processing of (1) is executed on the sensor
side, the processing of (2) is executed on the sensor and/or
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Figure 3. Configurations of the framework.

cloud side, and the processing of (3) is executed on the cloud
side.

4. EVALUATION EXPERIMENTS

In this study, we perform the following two experiments
to investigate the performance in the case of load balancing
between sensors and the cloud side of feature extraction in
the video streaming application framework.

expl) Evaluation experiments of the performance consid-
ering changes in the number of Bolt threads

exp2) Evaluation experiments of the load balancing be-
tween sensors and the cloud considering the network
bandwidth

Each experiment compares the number of jobs completed
per elapsed time. expl) also compares the average process-
ing time per stream datum with the change in the number
of processing threads and the tuple receive interval on the
Bolt thread.

4.1 Overview of experiments

In the experiments, we discriminate two human behaviors
using the implemented system. First, Jubatus learns two
human behaviors by using 100 images of 320x240 pixels:
”sit on the chair” and ”"open the door”. By selecting image
data randomly each time defined in Spout, we extract the
features of the selected image data. The number of Visual
Words in the feature extraction is set to 100. In expl), as
shown in Table 1, the number of Spout threads is set to two,

Table 1. Measurement parameters (expl)
Number of Spout Threads 2

Number of Bolt Threads 8, 16, 24, 32
Inter-arrival Time of Image Data | 10[ms/tuple]
Network Bandwidth 1000[Mbps]

Table 2. Measurement parameters (exp2)

Number of Spout Threads 2

Number of Bolt Threads 16

Inter-arrival Time of Image Data 10[ms/tuple

Network Bandwidth 10, 50, 100, 1000[Mbps]

the inter-arrival time of image data is set to 10 ms/tuple,
and the number of Bolt threads is 8, 16, 24, or 32. In exp2),
as shown in Table 2, the number of Spout threads is set to
two, the number of Bolt threads is set to 16, the inter-arrival
time of image data is set to 10 ms/tuple, and the network
bandwidth between sensors and cloud varies 10, 50, 100,
and 1000 Mbps. We use PSPacer [9] for network bandwidth
control.

The constructed Storm cluster is shown in Figure 4. Both
the computer on the sensor side and the computer on the
cloud side use an Intel Xeon W5590 ((3.33 GHz, 4 core)x2
socket). Preparing five Supervisor nodes, we set one of the
Supervisor nodes on the sensor side and the others on the
cloud side computer. Each Supervisor node has 8 workers,
which is the number of cores. One of the Supervisor nodes
on the cloud side also acts as a Nimbus node. We use a
computer running Zookeeper on the cloud side.

4.2 Experimental Results

4.2.1 Evaluation experiments of performance con-
sidering changes of number of Bolt threads

We evaluate the performance by considering the change
of the number of Bolt threads. Figure 5 shows the result of
the number of jobs processed for the elapsed time. The ver-
tical axis represents the total number of processed jobs, and
the horizontal axis represents the time in seconds. As the
number of Bolt threads increases, the number of jobs pro-
cessed for the elapsed time increases. However, the num-
ber of processed jobs does not increase significantly after
the number of Bolt threads reaches 16 because the num-
ber of Bolt threads reaches the number that can process the
amount of generated data. When using an excessive number
of Bolt threads for the amount of stream data, performance
deterioration is not observed.

Figure 6 shows the interval time required to receive the
tuple on the Bolt thread and the average processing time
per 1 tuple. The vertical axis represents the interval time
to receive the tuple on the Bolt thread and the average pro-
cessing time per 1 tuple in milliseconds. The horizontal axis
represents the number of Bolt threads. The processing time
does not change when increasing the number of Bolt threads,
but the interval time from receiving a tuple to receiving
the next tuple increases because increasing the number of
Bolt threads requires more time for the assignment from the
Spout thread to the Bolt thread.
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4.2.2  Evaluation experiments of load balancing be-
tween sensors and the cloud considering the
network bandwidth

We evaluate the performance of load balancing between
the sensors and cloud considering the network bandwidth.
In this experiment, the number of Bolt threads is 16 be-
cause the number of processed jobs does not increase sig-
nificantly after the number of Bolt threads reaches 16 for
10 ms/tuple, as shown in Figure 5. Figure 7 and Figure 8
show the measurement result. The vertical axis represents
the total number of processed jobs, and the horizontal axis
represents the time in seconds. Table 3 shows the arrange-
ment of the processing threads. Comparing the results when
the bandwidth between the sensors and cloud is 1 Gbps and
100 Mbps shows that limiting the bandwidth causes a de-
crease of the number of processed jobs. When using load
balancing between the sensors and cloud, the performance
in the presence or absence of distributed processing between
the sensors and cloud does not change at 1 Gbps. On the
other hand, the number of processed jobs is increased by
distributed processing between the sensors and cloud at 100
Mbps, 50 Mbps, and 10 Mbps. When the server on sensor
side has rich resources (boltx5), the number of processed
jobs increases more than the case that the server has poor
resources (boltx2). Thus, when the network bandwidth is
low, load distribution processing between the sensors and

250
M processing time of 1 tuple[ms]

m tuple receiving interval[ms]

200
150
: II II I I
0
8 16 24 32

Number of Bolt Threads

o

[
o

Figure 6. The interval time to receive tuples on
each Bolt thread and average processing time per
one tuple.

Table 3. The arrangement of processing threads in
the case of distributed processing between sensors
and the cloud

Number of
Bolt Threads Slave Node Slave Nodel | Slave Node2
in Sensor Side (Sensor side) (Cloud side) | (Cloud side)
0 Spoutx2, Boltx0 Boltx8 Boltx8
2 Spout x2, Boltx2 Boltx 7 Boltx7
5 Spoutx2, Boltx5 Bolt x5 Boltx6

cloud is effective.

5. RELATED WORKS

Many video streaming analyses using cloud technology
have been studied in recent years, but most of the meth-
ods focus on the efficient contents search of video data on
the cloud and load balancing in the on-demand system of
the video data using a cloud platform. A built-in system
[10] that detects, tracks, and analyzes video streaming and
an automatic monitoring system [11] that detects activities
and tracks abnormal behavior of people have been devel-
oped, but these run on 1 node and are not considered scal-
able.

Abdullah et al. constructed a video analysis framework
that obtains, processes, and analyzes video data in the cloud
[12]. They proposed a scalable framework on the cloud and
improved image processing speed by using a GPU. The cur-
rent study is similar in terms of processing a large amount of
video data using a design that is considered scalable. This
method performs all processes on the cloud, but our study
use the fat client model.

6. CONCLUSIONS

In this study, to achieve the real-time processing of the
video streaming analysis application, considering the traffic
and processing of the load, we improve the speed of pre-
processing of video streaming analysis using load balancing
between the sensors and cloud. We introduce Storm and
design and implement video streaming analysis application
framework load balancing processing between sensors and
the cloud. In a large cluster environment, we perform exper-
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iments in consideration of the network bandwidth between
the sensors and cloud and demonstrate the effectiveness of
load balancing between the sensors and cloud.

In this study, we have experimented with constant inter-
arrival time image data. However, in the real environment,
the amount of streaming data changes because the frame-

work analyzes video streaming upon motion detection. In
the future, we will develop a distributed processing scheme
to correspond to streaming data that vary greatly.
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