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Abstract—A social media message that is forwarded (e.g., 

retweeted in Twitter) by many users may diffuse widely. Such a 

‘viral’ message may have a major impact in the real world. If the 

content maligns a company, the company must respond as quickly 

as possible to defend its brand image. Timely knowledge about 

what kinds of information are diffusing in social media is thus 

quite important. We have developed a system that enables real-

time analysis of information diffusion in social media. We defined 

typical data access patterns and created a special view for 

complicated queries such as top-k ranking queries to improve 

query performance. The time window is customized by estimating 

diffusion extinction, which enables retention of diffusion data in 

the system as long as it is being retweeted frequently. Evaluation 

showed that the processing of simple access patterns was extremely 

fast, that the special view effectively improved performance, and 

that the time-window customization improved accuracy. 

Keywords- social media; information diffusion; stream 

processing; in-memory database; query processing 

I.  INTRODUCTION 

A. Information Diffusion in Social Media 

A microblogging service such as Twitter characterized by 
frequent message posting and transient topics. Many tweets are 
replies or messages shared among users (“retweets”). If a 
retweeted message (RT) is shared widely so that it is read by 
many users, it may have a large impact in the real world. If the 
content maligns or criticizes a company, the company will 
normally want to respond as quickly as possible to protect its 
brand image and reputation. In contrast, if positive information 
is often retweeted, there is a positive impact on the marketing 
efforts of the company. Knowing what kinds of information are 
being widely disseminated through social media is thus essential 
in a company’s efforts to protect its corporate brand value. 

In Twitter-like services, many messages are posted in real 
time around the world. This means retweets can diffuse rapidly 
within hours or even minutes. There is a need to respond quickly 
on the basis of an analysis of user behaviors and to quickly 
identify trending messages because much of the information 
shared through social media quickly loses its impact. In the 
current Twitter system, tweets can be searched for by using 
keywords related to a company and monitored manually. 
Alternatively, there are commercial services that can check if 
certain topics are going viral by tracking the numbers of tweets 
containing target keywords [1].   

Several research groups are studying trend and/or event 
detection through real-time monitoring of the entire Twitter 
stream. One group, for example, developed TwitterMonitor [2], 
a tool that identifies hot topics on Twitter by detecting bursts of 
keywords that arrive at unusually high rates. 

We have developed a system for analyzing the diffusion of 
information through retweeted tweets. The retweeting of a tweet 
message by many users indicates that they find the content 
interesting and/or entertaining. By identifying the key people 
whose messages are frequently retweeted or who retweet 
messages about particular topics, we can answer such questions 
as “Who is interested in this topic?” and “Who are the 
influencers for this topic?”   

Visualizing the networks through which retweeted tweets are 
diffused is helpful for finding the diffusion routes among users 
and the influencers whose messages were retweeted by many 
users. The profiles of the key people can be analyzed [3] to 
estimate their characteristic features, such as their interests, age, 
gender, and location.  

B. Stream Processing of Information Diffusion Data 

Twitter messages can be treated as streaming data because 
large volumes of message data are posted continuously. In 
stream processing, the streaming data are usually divided into 
segments called windows. Window size is usually measured in 
either the amount of data or the length of time. Various 
operations are applied to the data within a window. When 
information diffusion data are being handled in a stream 
processing system with time windows, the incoming tweets are 
collected and processed in batches.  

 

Figure 1. Stream processing of tweets. 

An example of this processing for retweets is shown in 
Figure 1. Each box represents a tweet message, either a tweet or 
a retweet. The sequentially arriving tweets are divided into the 
defined time windows and partitioned by tweet IDs. If a tweet is 
a retweet, it is partitioned by the tweet ID of the original tweet. 
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If a tweet with an ID of 1 (Tweet1) is retweeted, a thread for 
Tweet1 is created, and its retweets are collected.  

If the window size is set to one hour, and the number of 
retweets in each tweet thread is counted, the retweet count for 
each tweet that was retweeted in the past hour is obtained. We 
are interested in the tweets currently being retweeted by many 
users, but the total retweet count for each tweet cannot be 
directly obtained. This means that we have to use fragmented 
diffusion data for our diffusion analysis. We may also fail to 
create a complete information diffusion network due to missing 
retweets. 

To handle all of the diffusion data for each tweet retweeted 
by users, we use an in-memory data store to collect the diffusion 
data in the stream system. In stream processing, a query is 
usually defined in advance and used for a period of time with the 
incoming streaming data. In contrast, for an in-memory data 
store, various queries can be issued interactively against the 
stored data. The queries are usually processed quickly since the 
data is stored in memory.  

Continuously storing all of the diffusion data for many days 
is impractical since memory resources are limited. In addition, 
there is no reason to store stale diffusion data (i.e., information 
in tweets that are no longer being retweeted). Therefore, we 
retain diffusion data in the data store for only as long as it is 
being retweeted frequently. When the data becomes stale, they 
are removed from the data store.  

To facilitate the handling of complicated queries, such as a 
user ranking query of the top-k influencers by topic, we created 
a special view.  

 Here are the main contributions of our work. 

• Our diffusion analysis system enables real-time analysis of 
streaming social data. A special view for ranking-related 
queries enables rapid data access. 

• Customization of the time window enables the freshness of 
the stored data to be assessed by estimating retweet diffusion 
extinction. 

• Query performance evaluation using typical analysis 
scenarios with real diffusion data from Twitter showed that 
the query processing is extremely fast. For a complicated 
query such as ranking-related query, the special view 
effectively improves query performance. The accuracy of 
diffusion extinction was much better than with a fixed time-
window size. 

The outline of the rest of this paper is as follows. Section 2 
describes the diffusion analysis system. Section 3 provides data 
access patterns and optimizations. We introduce the 
maintenance method for the data store in Section 4. Section 5 
presents our experimental environment and describes the 
performance evaluation. We review related work in Section 6 
and conclude the paper in Section 7. 

II. REAL-TIME DIFFUSION ANALYSIS SYSTEM 

An overview of the real-time diffusion analysis system is 
shown in Figure 2. The framework consists of a stream server 
and an application server. Incoming retweets are sequentially 

inserted into an in-memory data store running on the stream 
server. The application server provides various modules for 
analyzing the diffusion data. For example, the “Ranking” 
module creates a ranking of retweet counts to enable detection 
of the current hot tweets or the ranking of influential users for a 
specified topic. The “Visualization” module displays the 
diffusion network for a specified tweet. Other modules for 
diffusion analysis can be added, such as a profile analysis 
module for estimating users’ interests or locations. Each module 
retrieves diffusion data from the stream server. 

 
Figure 2. Real-time diffusion analysis system. 

The stream processing runs in memory on the stream server. 
Since the size of the memory is limited, stale data must be 
deleted or moved to a disk-resident database. The database stores 
historical diffusion data for use in offline data analysis. We focus 
on real-time processing in this paper. 

There are various candidates for the in-memory data store 
such as an in-memory database, a key/value store, and a graph 
database [4,5]. In our application, the primary scenarios involve 
finding trending tweets or popular users by aggregating or 
sorting data. The in-memory database is best for this since it can 
handle complicated queries using SQL.  

III. DATA ACCESS PATTERNS AND OPTIMIZATIONS 

In this section, we describe typical data access patterns for 
diffusion analysis. We also describe our special view for 
ranking-related query processing. 

A. Data Access Patterns  
We use two tables, a RETWEET table and an 

ORIGIN_TWEET table, as shown in Figure 3. The RETWEET 
table stores retweeted messages. It has fields for the ID of the 
retweet (TweetID), the ID of the original tweet (RTID), the 
retweet time (Time), the source user name (Src) and destination 
(Dst), the retweet user’s language (Lang), and the location 
information (Location). The value of Dst is the name of the user 
who retweeted the message. The value of Src is the name of the 
user whose message was retweeted. The ORIGIN_TWEET table 
has a tweet ID (TweetID), the tweet time (Time), the name of 
the user who posted the tweet (User), the tweet message (Msg), 
and the retweet count (RTcount). The RTcount is incremented 
when a corresponding retweet message is received. RTID in the 
RETWEET table can be joined with TweetID in the 
ORIGIN_TWEET table to get information about the original 
tweet. 
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Figure 3. Tables in in-memory database. 

Here are typical data access  patterns. 

(1) Obtain retweet diffusion network data for specified 
tweets 

With this pattern, diffusion data are obtained to create the 
diffusion network. We can then answer “How did the 
information flow among users?” A network can be used for 
network analytics such as clustering and frequent path detection. 
This query pattern can be interpreted as the following SQL 
example: 

[Query 1] 

SELECT  Src, Dst 

FROM   RETWEET  

WHERE  RTID in (tweet ids) 

(2)  Find trending tweets 

This query pattern is used to obtain the current rankings of 
retweet counts. This SQL query returns the top ten most 
retweeted tweets: 

[Query 2] 
SELECT  *  
FROM   ORIGIN_TWEET  
WHERE  TweetID in (tweet ids) 
ORDER BY  RTcount  DESC 
FETCH FIRST 10 ROWS ONLY 

(3) Find influential users 
This query pattern is used to obtain user rankings. We can 

answer questions such as “Who is interested in this topic?” and 
“Who is the influencer for this topic?” by using this pattern. The 
SQL query returns the top ten users who retweeted most often 
from among the specified tweets: 

[Query 3] 
SELECT  Src, count(Src)  
FROM  RETWEET  
WHERE  TweetID in (tweet ids)  
GROUP BY  Src  
ORDER BY  count(Src)  DESC  
FETCH FIRST 10 ROWS ONLY 
 
When Src is specified in the GROUP-BY clause, Query 3 

returns the most influential users.  

In these ways, we can obtain various types of information 
from the in-memory database. The data access speed is higher 
than that of a disk-resident database because the results are 
returned directly from memory. In particular, simple queries are 
extremely fast, such as fetching data using a primary key and its 
associated values.  

However, for some complicated queries using sort, count, 
join, and subqueries, the overall query performance can be worse 
than that of a disk-resident database [6]. For example, Query 3 
may be slow because it uses aggregation operations. Therefore, 
we need to use data access optimization. 

B. Data Access Optimization for Top-k Ranking Queries 

We created a special view for rapid processing of ranking-

related queries. For example, a query to find influencers calls for 

obtaining in rank order the names of users who are frequently 

retweeted. This is a top-k retrieval query, so we can use a rapid 

top-k retrieval algorithm with a special view that has keys and 

values. 

An example view for calculating user rankings is shown in 

Figure 4. The key is the tweet ID, and the value is the list of (u, 

w). The u is the name of the user whose tweet was retweeted, 

and the w is the retweet count for u. The u represents the Src user 

in the RETWEET table. The value of w is the result of “SELECT 

Src, count(Src) FROM RETWEET GROUP BY Src.” For 

example, for the tweet with an ID of 1, u3 was retweeted by 100 

users, and u1 was retweeted by 40 users.  

 
Figure 4. Example view for calculating user rankings. 

Top-k retrieval is done using an optimized method called the 
threshold algorithm [7], which calculates the top-k rankings 
more rapidly than a non-optimized method 

[create view for top-k query] 

For each original tweet ID (= t), create a view S(t) and an index 
R(t).  

S(t): List of (u, w) pairs for tweet t, sorted by retweet count in 
descending order. S(t) can be implemented using a standard list 
structure. 

R(t): Index for random access to a (u, w) pair for an arbitrary 
user in S(t). R(t) can be implemented using a standard map 
structure. 

In Figure 4, S(1) = [(u3, 100), (u1, 40)], S(2) = [ (u1, 300), (u5, 
230), (u4,100)], and S(3) = [(u3, 500), (u2, 53)]. 

[top-k algorithm ] 

The algorithm for calculating the top-k users whose messages 
were retweeted the most for a specified set of tweets t1, t2, … tm 
is as follows. 
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Use of the special view consumes additional memory space 
for S(t) and R(t). There is thus a trade-off between memory 
usage and query performance. 

IV. METHOD FOR MAINTAINING DIFFUSION DATA 

IN IN-MEMORY STORE 

As described in Section 2, stale data must be deleted from 
the in-memory data store since the amount of memory is limited, 
but the diffusion data should be retained as long as it is being 
retweeted frequently. In this section, we introduce a customized 
timewindow for each tweet to determine when it is to be 
removed. 

A. Time-window Customization 
The time window is customized as shown in Figure 5. The 

start of the window is when the original tweet was posted. The 
end of the window should be when the last retweet was posted, 
but it is difficult to find that endpoint because even an old tweet 
could suddenly be retweeted. 

 

Figure 5. Customized time window. 

Retweeted messages diffuse rapidly within hours or even 
minutes but usually not over many days. Therefore, we assume 
that, after a certain period from the original tweet posting, the 
occurrence probability of a retweet is low enough for the 
diffusion data to be safely removed from memory. As a simple 
technique, we use a fixed period of time to determine diffusion 
extinction for all of the diffusion data. However, the time lag 
between diffusion extinction and the original tweet varies [8]. 

 A retweet propagation model [9] shows that retweets follow 
a log-normal distribution. Therefore, we regard the distribution 
of retweets over time in each time slot as a probability 
distribution. Figure 6 shows an example distribution of the 
retweet delay times. 

 

 

Figure 6. Example distribution of retweet delay times. 

We fit the distribution of the probability density function to 
a log-normal distribution. The probability density function of a 
log-normal distribution with parameters µ and σ is given by 
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The diffusion data for the first hour from when the original 
tweet was posted are used to estimate µ and σ. The 90 percentile 
point in the estimated distribution is then calculated, and that 
point is defined as the time-window size for the tweet. This is 
regarded as the time when the diffusion will be almost extinct. 
As a result, about 90% of the diffusion data is retained in the data 
store. 

The system calculates diffusion extinction to determine the 
time-window size when it finds a tweet one hour after it was 
posted. If only a few retweets for a tweet are found, the tweet is 
unlikely to start being retweeted in the future. Hence, if the 
retweet count is less than a threshold, the corresponding 
diffusion data is considered to be extinct. 

B. Workload Control to Adjust for Bursts of Streaming Data 
As shown in Figure 7, the volume of retweets tends to peak 

at about 3 minutes following the posting of the original tweet. 
The peak is particularly high for certain topics such as an 
election, a World Cup match, an Olympics event, and a disaster. 
This burst of data could result in the system trying to process 
thousands or tens of thousands of tweets simultaneously, which 
would cause a lack of machine resources in the stream server. 
Workload control is used to adjust for such bursts of streaming 
data. 

 
Figure 7. Volume of retweets within first five minutes of tweet posting. 

This control includes removing less important diffusion data 
from the in-memory data store even if the corresponding tweet 
has not yet reached the estimated point of diffusion extinction. 
This is currently done by using the LRU (least recently used) 
method, a standard method of data eviction, to remove the 
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1. If !S(ti).hasNext() Then continue;

2. Retrieve (ui, wi) from S(ti);

3. If result_candidate.contains(ui) Then continue;

4. V := sum of w in each R(tj) for ui // j=1,...,m

5. Vk := sum of w in the k-th candidate in 

result_candidate;

6. If (V > Vk) Then update result_candidate

by (ui, V).
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8. If (V >= Vk) Then break;
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diffusion data that was least recently retweeted. This is not the 
optimal method, however, since other relevant information such 
as the total number of retweets and the user who posted the tweet 
are not considered. Future work includes defining the 
importance of each tweet and using that information instead of 
LRU information for data eviction.   

V. PERFORMANCE EVALUATION  

A. Methodology 
(1) Query processing 

We measured the response times for the three queries 
described in Section 3. For Query 3, we compared performance 
with and without using the special view. We used the same SQL 
statements and the database tables shown in Section 3. The 
response time was taken as the average response time for the 
same query repeated 10,000 times. (The first 1,000 times were 
ignored.) 

(2) Customized time window 

We determined the time of diffusion extinction by fitting a 
log-normal distribution, as described in Section 4.1. We 
estimated µ and σ using the diffusion data for the first hour from 
when the original tweet was posted.  

Our test server had two Xeon X5670 CPUs (2.93 GHz, 6 
cores) with 32 GB of RAM, running Red Hat Linux 5.5. The 
measurement client ran on the same server. The H2 database 
[10] was used as the in-memory mode. Indexes were created for 
the TweetID field in both the RETWEET and ORIGIN_TWEET 
tables and for the SRC field in the RETWEET table. The view 
for the top-k ranking in Query 3 was implemented in Java (IBM 
J9 VM JRE 1.7.0). The fit for the log-normal distribution was 
computed using R [11]. 

B. Experimental Data 
We used retweets of Twitter messages in Japanese for the 

period from 1/19/2014 to 2/11/2014. This period included the 
Tokyo governor’s election, which was one of the first elections 
in Japan for which “Internet campaign activities” were permitted. 
We collected the tweets and retweets that were posted from the 
five official accounts representing the candidates in the election 
as well as those of heavy social media users. A total of 1611 
tweets were retweeted, and the total retweet count was 76,593. 

C. Experimental Results 

1) Query processing results 
Figure 8 shows the average response times for Queries 1, 2, 

and 3. For Query 1, we specified one tweet ID in the WHERE 
clause. For Queries 2 and 3, we specified 100 different tweet IDs 
in each query. The tweet IDs were chosen at random. The 
response times for Queries 1 and 2 were 0.2 ms and 0.4 ms, 
respectively. This indicates that query processing was extremely 
fast for these queries. The response time for Query 3 was much 
longer, probably because the computational cost was higher for 
the aggregation operations. 

 

 

Figure 8. Query response times. 

The average response time for Query 3 when the special 
view for user rankings was used is plotted in Figure 9. The 
number of specified tweet IDs was increased from 100 to 500. 
The blue dashed line shows the results without the view, and the 
red solid line shows the results with the view. The query 
performance was greatly improved by using the view. The 
maximum performance difference was 64 times faster when the 
number of tweet IDs was 100. The response time without the 
view increased in proportion to the number of specified tweet 
IDs. The response time with the view also increased, but it was 
still much shorter than without the view. 

 

Figure 9. Query 3 response time using view for user rankings. 

2) Diffusion extinction estimation results 
To evaluate the effectiveness of diffusion extinction, we used 

the top 50 most retweeted tweets in our data set. We fitted the 
distribution of each tweet to the probability density function of 
the log-normal distribution, estimated the retweet curve, and 
calculated the 90 percentile point for that curve to determine the 
time-window size for the tweet. We counted the total number of 
retweets within the time window and calculated the percentage 
of those retweets to the total number of retweets. The total count 
was for one week’s worth of data.  

We calculated the average percentages for the 50 tweets. 
Since our method covers about 90% of the retweets, we retained 
about 90% of the diffusion data in the in-memory data store as 
expected. We also calculated the average percentages using a 
fixed period of time to determine the diffusion extinction for all 
50 tweets. We set the fixed time (= t) to 1, 10, 11, and 12 hours.  

Table 1. Average coverage of retweet diffusion 

t=1 t=10 t=11 t=12 our method 

55.0% 89.1% 89.9% 90.6% 89.9% 

As shown in Table 1, when t was 1 hour, the average 
coverage was only 55%. This indicates that about a half of the 
retweets occurred after more than one hour from the original 



tweet posting. When t was 11 hours, the coverage was the same 
as with our method. In this case, the diffusion data for each tweet 
was stored in the data store for 11 hours because the time-
window size was set to 11 hours.  

Figure 10 shows the time interval needed to cover 90% of all 
retweets for each tweet. The green and yellow bars show the 
actual 90% point and the point estimated with our method, 
respectively. The results with our method were reasonably close 
to the actual results for each tweet. For tweet 18, the actual point 
was about seven days later. The tweet was retweeted at least a 
few times every day, making it difficult to estimate the 
extinction because our method works with the retweet data 
posted within one hour from the original posting time. This 
weakness can be overcome by integrating another propagation 
estimation model. The average difference between the actual and 
estimated results was 368 minutes, while the difference between 
the actual results and 660 minutes (= time-window size of 11 
hours) was 535 minutes. This indicates that the accuracy of our 
method is significantly better than that with a fixed time-window 
size. 

 
Figure 10. Time interval needed to cover 90% of all retweets. 

VI. RELATED WORK 
There have been many studies of information diffusion 

analysis in social networks. 

Truthy [12] is a Web service that tracks political information 
on Twitter. It provides real-time analysis of information 
diffusion in social media by mining, visualizing, mapping, 
classifying, and modeling massive streams of public 
microblogging events. TweeQL [13] is a SQL-like query 
interface for streaming Twitter data. The streaming API enables 
users to issue long-running HTTP requests with keyword, 
location, or user ID filters and collect the matching tweets that 
appear in the stream. It uses windowed select-project-join 
aggregate queries over the input stream and supports user-
defined functions for deeper processing of tweets.  

There are also information diffusion analysis services, but 
their descriptions do not reveal their performance for processing 
social media data and instead focus on the analysis algorithm 
used. Our focus here is on the development of a real-time 
analysis system and its query processing performance. 

Gupta et al. [14] used materialized views to quickly access a 
copy of the target data. They are created by incrementally 

updating the differential data. Charles et al. [15] proposed 
storing database queries in cache and using offline analysis of 
the queries and updates. The structure of our special view is 
different, and an efficient maintenance method for updating the 
view would improve our system. 

VII. CONCLUSION AND FUTURE WORK  
Our proposed diffusion analysis system enables real-time 

analysis of streaming social data. It helps companies to respond 
quickly on the basis of an analysis of user behaviors and to 
quickly detect trending tweets, which is important because most 
of the information shared through social media quickly loses its 
impact. An in-memory database is used to collect the diffusion 
data, and the time window is customized by estimating diffusion 
extinction so that the best time to remove stale data can be 
effectively determined.  

Measurement of the query performance of our system using 
typical analysis scenarios showed that the processing of simple 
access patterns was extremely fast. The special view we created 
for complicated queries such as ranking-related queries 
effectively improved performance. Evaluation of the time-
window customization used to determine diffusion extinction 
showed that the accuracy was much better than with a fixed 
time-window size. 

Future work includes evaluating the workload control 
method used to handle bursts of retweet data. 
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