
Performance of System for Analyzing Diffusion of

Social Media Messages in Real Time

Miki Enoki

Ochanomizu University

IBM Research – Tokyo

Tokyo, Japan

enomiki@jp.ibm.com

 Issei Yoshida

IBM Research – Tokyo

Tokyo, Japan

issei@jp.ibm.com

Masato Oguchi

Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku

Tokyo, Japan

oguchi@is.ocha.ac.jp

Abstract—A social media message that is forwarded (e.g.,

retweeted in Twitter) by many users may diffuse widely. Such a

‘viral’ message may have a major impact in the real world. If the

content maligns a company, the company must respond as quickly

as possible to defend its brand image. Timely knowledge about

what kinds of information are diffusing in social media is thus

quite important. We have developed a system that enables real-

time analysis of information diffusion in social media. We defined

typical data access patterns and created a special view for

complicated queries such as top-k ranking queries to improve

query performance. The time window is customized by estimating

diffusion extinction, which enables retention of diffusion data in

the system as long as it is being retweeted frequently. Evaluation

showed that the processing of simple access patterns was extremely

fast, that the special view effectively improved performance, and

that the time-window customization improved accuracy.

Keywords- social media; information diffusion; stream

processing; in-memory database; query processing

I. INTRODUCTION

A. Information Diffusion in Social Media

A microblogging service such as Twitter characterized by
frequent message posting and transient topics. Many tweets are
replies or messages shared among users (“retweets”). If a
retweeted message (RT) is shared widely so that it is read by
many users, it may have a large impact in the real world. If the
content maligns or criticizes a company, the company will
normally want to respond as quickly as possible to protect its
brand image and reputation. In contrast, if positive information
is often retweeted, there is a positive impact on the marketing
efforts of the company. Knowing what kinds of information are
being widely disseminated through social media is thus essential
in a company’s efforts to protect its corporate brand value.

In Twitter-like services, many messages are posted in real
time around the world. This means retweets can diffuse rapidly
within hours or even minutes. There is a need to respond quickly
on the basis of an analysis of user behaviors and to quickly
identify trending messages because much of the information
shared through social media quickly loses its impact. In the
current Twitter system, tweets can be searched for by using
keywords related to a company and monitored manually.
Alternatively, there are commercial services that can check if
certain topics are going viral by tracking the numbers of tweets
containing target keywords [1].

Several research groups are studying trend and/or event
detection through real-time monitoring of the entire Twitter
stream. One group, for example, developed TwitterMonitor [2],
a tool that identifies hot topics on Twitter by detecting bursts of
keywords that arrive at unusually high rates.

We have developed a system for analyzing the diffusion of
information through retweeted tweets. The retweeting of a tweet
message by many users indicates that they find the content
interesting and/or entertaining. By identifying the key people
whose messages are frequently retweeted or who retweet
messages about particular topics, we can answer such questions
as “Who is interested in this topic?” and “Who are the
influencers for this topic?”

Visualizing the networks through which retweeted tweets are
diffused is helpful for finding the diffusion routes among users
and the influencers whose messages were retweeted by many
users. The profiles of the key people can be analyzed [3] to
estimate their characteristic features, such as their interests, age,
gender, and location.

B. Stream Processing of Information Diffusion Data

Twitter messages can be treated as streaming data because
large volumes of message data are posted continuously. In
stream processing, the streaming data are usually divided into
segments called windows. Window size is usually measured in
either the amount of data or the length of time. Various
operations are applied to the data within a window. When
information diffusion data are being handled in a stream
processing system with time windows, the incoming tweets are
collected and processed in batches.

Figure 1. Stream processing of tweets.

An example of this processing for retweets is shown in
Figure 1. Each box represents a tweet message, either a tweet or
a retweet. The sequentially arriving tweets are divided into the
defined time windows and partitioned by tweet IDs. If a tweet is
a retweet, it is partitioned by the tweet ID of the original tweet.

Tweet

Time

ReTweetReTweet ReTweet ReTweet

Interval x

Window

Tweet ReTweetReTweet ReTweet

Tweet1

Tweet2

If a tweet with an ID of 1 (Tweet1) is retweeted, a thread for
Tweet1 is created, and its retweets are collected.

If the window size is set to one hour, and the number of
retweets in each tweet thread is counted, the retweet count for
each tweet that was retweeted in the past hour is obtained. We
are interested in the tweets currently being retweeted by many
users, but the total retweet count for each tweet cannot be
directly obtained. This means that we have to use fragmented
diffusion data for our diffusion analysis. We may also fail to
create a complete information diffusion network due to missing
retweets.

To handle all of the diffusion data for each tweet retweeted
by users, we use an in-memory data store to collect the diffusion
data in the stream system. In stream processing, a query is
usually defined in advance and used for a period of time with the
incoming streaming data. In contrast, for an in-memory data
store, various queries can be issued interactively against the
stored data. The queries are usually processed quickly since the
data is stored in memory.

Continuously storing all of the diffusion data for many days
is impractical since memory resources are limited. In addition,
there is no reason to store stale diffusion data (i.e., information
in tweets that are no longer being retweeted). Therefore, we
retain diffusion data in the data store for only as long as it is
being retweeted frequently. When the data becomes stale, they
are removed from the data store.

To facilitate the handling of complicated queries, such as a
user ranking query of the top-k influencers by topic, we created
a special view.

 Here are the main contributions of our work.

• Our diffusion analysis system enables real-time analysis of
streaming social data. A special view for ranking-related
queries enables rapid data access.

• Customization of the time window enables the freshness of
the stored data to be assessed by estimating retweet diffusion
extinction.

• Query performance evaluation using typical analysis
scenarios with real diffusion data from Twitter showed that
the query processing is extremely fast. For a complicated
query such as ranking-related query, the special view
effectively improves query performance. The accuracy of
diffusion extinction was much better than with a fixed time-
window size.

The outline of the rest of this paper is as follows. Section 2
describes the diffusion analysis system. Section 3 provides data
access patterns and optimizations. We introduce the
maintenance method for the data store in Section 4. Section 5
presents our experimental environment and describes the
performance evaluation. We review related work in Section 6
and conclude the paper in Section 7.

II. REAL-TIME DIFFUSION ANALYSIS SYSTEM

An overview of the real-time diffusion analysis system is
shown in Figure 2. The framework consists of a stream server
and an application server. Incoming retweets are sequentially

inserted into an in-memory data store running on the stream
server. The application server provides various modules for
analyzing the diffusion data. For example, the “Ranking”
module creates a ranking of retweet counts to enable detection
of the current hot tweets or the ranking of influential users for a
specified topic. The “Visualization” module displays the
diffusion network for a specified tweet. Other modules for
diffusion analysis can be added, such as a profile analysis
module for estimating users’ interests or locations. Each module
retrieves diffusion data from the stream server.

Figure 2. Real-time diffusion analysis system.

The stream processing runs in memory on the stream server.
Since the size of the memory is limited, stale data must be
deleted or moved to a disk-resident database. The database stores
historical diffusion data for use in offline data analysis. We focus
on real-time processing in this paper.

There are various candidates for the in-memory data store
such as an in-memory database, a key/value store, and a graph
database [4,5]. In our application, the primary scenarios involve
finding trending tweets or popular users by aggregating or
sorting data. The in-memory database is best for this since it can
handle complicated queries using SQL.

III. DATA ACCESS PATTERNS AND OPTIMIZATIONS

In this section, we describe typical data access patterns for
diffusion analysis. We also describe our special view for
ranking-related query processing.

A. Data Access Patterns
We use two tables, a RETWEET table and an

ORIGIN_TWEET table, as shown in Figure 3. The RETWEET
table stores retweeted messages. It has fields for the ID of the
retweet (TweetID), the ID of the original tweet (RTID), the
retweet time (Time), the source user name (Src) and destination
(Dst), the retweet user’s language (Lang), and the location
information (Location). The value of Dst is the name of the user
who retweeted the message. The value of Src is the name of the
user whose message was retweeted. The ORIGIN_TWEET table
has a tweet ID (TweetID), the tweet time (Time), the name of
the user who posted the tweet (User), the tweet message (Msg),
and the retweet count (RTcount). The RTcount is incremented
when a corresponding retweet message is received. RTID in the
RETWEET table can be joined with TweetID in the
ORIGIN_TWEET table to get information about the original
tweet.

 ・・

u2

u1

Src

・・

u4

u2

Dst

・・

Time data

Time data

Time

・・

Ja

Ja

Lang

・・

GPS

GPS

LocationTweetID RTID ・・

100 1 ・・

101 1 ・・

・・ ・・ ・・・・

u2

u1

Src

・・

u4

u2

Dst

・・

Time data

Time data

Time

・・

Ja

Ja

Lang

・・

GPS

GPS

LocationTweetID RTID ・・

100 1 ・・

101 1 ・・

・・ ・・ ・・

RETWEET table

Figure 3. Tables in in-memory database.

Here are typical data access patterns.

(1) Obtain retweet diffusion network data for specified
tweets

With this pattern, diffusion data are obtained to create the
diffusion network. We can then answer “How did the
information flow among users?” A network can be used for
network analytics such as clustering and frequent path detection.
This query pattern can be interpreted as the following SQL
example:

[Query 1]

SELECT Src, Dst

FROM RETWEET

WHERE RTID in (tweet ids)

(2) Find trending tweets

This query pattern is used to obtain the current rankings of
retweet counts. This SQL query returns the top ten most
retweeted tweets:

[Query 2]
SELECT *
FROM ORIGIN_TWEET
WHERE TweetID in (tweet ids)
ORDER BY RTcount DESC
FETCH FIRST 10 ROWS ONLY

(3) Find influential users
This query pattern is used to obtain user rankings. We can

answer questions such as “Who is interested in this topic?” and
“Who is the influencer for this topic?” by using this pattern. The
SQL query returns the top ten users who retweeted most often
from among the specified tweets:

[Query 3]
SELECT Src, count(Src)
FROM RETWEET
WHERE TweetID in (tweet ids)
GROUP BY Src
ORDER BY count(Src) DESC
FETCH FIRST 10 ROWS ONLY

When Src is specified in the GROUP-BY clause, Query 3

returns the most influential users.

In these ways, we can obtain various types of information
from the in-memory database. The data access speed is higher
than that of a disk-resident database because the results are
returned directly from memory. In particular, simple queries are
extremely fast, such as fetching data using a primary key and its
associated values.

However, for some complicated queries using sort, count,
join, and subqueries, the overall query performance can be worse
than that of a disk-resident database [6]. For example, Query 3
may be slow because it uses aggregation operations. Therefore,
we need to use data access optimization.

B. Data Access Optimization for Top-k Ranking Queries

We created a special view for rapid processing of ranking-

related queries. For example, a query to find influencers calls for

obtaining in rank order the names of users who are frequently

retweeted. This is a top-k retrieval query, so we can use a rapid

top-k retrieval algorithm with a special view that has keys and

values.

An example view for calculating user rankings is shown in

Figure 4. The key is the tweet ID, and the value is the list of (u,

w). The u is the name of the user whose tweet was retweeted,

and the w is the retweet count for u. The u represents the Src user

in the RETWEET table. The value of w is the result of “SELECT

Src, count(Src) FROM RETWEET GROUP BY Src.” For

example, for the tweet with an ID of 1, u3 was retweeted by 100

users, and u1 was retweeted by 40 users.

Figure 4. Example view for calculating user rankings.

Top-k retrieval is done using an optimized method called the
threshold algorithm [7], which calculates the top-k rankings
more rapidly than a non-optimized method

[create view for top-k query]

For each original tweet ID (= t), create a view S(t) and an index
R(t).

S(t): List of (u, w) pairs for tweet t, sorted by retweet count in
descending order. S(t) can be implemented using a standard list
structure.

R(t): Index for random access to a (u, w) pair for an arbitrary
user in S(t). R(t) can be implemented using a standard map
structure.

In Figure 4, S(1) = [(u3, 100), (u1, 40)], S(2) = [(u1, 300), (u5,
230), (u4,100)], and S(3) = [(u3, 500), (u2, 53)].

[top-k algorithm]

The algorithm for calculating the top-k users whose messages
were retweeted the most for a specified set of tweets t1, t2, … tm
is as follows.

・・

message

message

Msg

・・

u5

u1

User

・・

Time data

Time data

Time

・・

14

29

RTcountTweetID ・・

1 ・・

2 ・・

・・ ・・・・

message

message

Msg

・・

u5

u1

User

・・

Time data

Time data

Time

・・

14

29

RTcountTweetID ・・

1 ・・

2 ・・

・・ ・・

ORIGIN_TWEET table

(u1, 40)

(u3, 100)

(u1, 40)

(u3, 100)

(u4, 100)

(u5, 230)

(u1, 300)

(u4, 100)

(u5, 230)

(u1, 300)

(u2, 53)

(u3, 500)

(u2, 53)

(u3, 500)

TweetID=1 TweetID=2 TweetID=3

(user name, RT count)

View for user ranking

Use of the special view consumes additional memory space
for S(t) and R(t). There is thus a trade-off between memory
usage and query performance.

IV. METHOD FOR MAINTAINING DIFFUSION DATA

IN IN-MEMORY STORE

As described in Section 2, stale data must be deleted from
the in-memory data store since the amount of memory is limited,
but the diffusion data should be retained as long as it is being
retweeted frequently. In this section, we introduce a customized
timewindow for each tweet to determine when it is to be
removed.

A. Time-window Customization
The time window is customized as shown in Figure 5. The

start of the window is when the original tweet was posted. The
end of the window should be when the last retweet was posted,
but it is difficult to find that endpoint because even an old tweet
could suddenly be retweeted.

Figure 5. Customized time window.

Retweeted messages diffuse rapidly within hours or even
minutes but usually not over many days. Therefore, we assume
that, after a certain period from the original tweet posting, the
occurrence probability of a retweet is low enough for the
diffusion data to be safely removed from memory. As a simple
technique, we use a fixed period of time to determine diffusion
extinction for all of the diffusion data. However, the time lag
between diffusion extinction and the original tweet varies [8].

 A retweet propagation model [9] shows that retweets follow
a log-normal distribution. Therefore, we regard the distribution
of retweets over time in each time slot as a probability
distribution. Figure 6 shows an example distribution of the
retweet delay times.

Figure 6. Example distribution of retweet delay times.

We fit the distribution of the probability density function to
a log-normal distribution. The probability density function of a
log-normal distribution with parameters µ and σ is given by

2

2

2

)(ln

2

1
)(σ

µ

πσ

−−

=

x

e
x

xf .

The diffusion data for the first hour from when the original
tweet was posted are used to estimate µ and σ. The 90 percentile
point in the estimated distribution is then calculated, and that
point is defined as the time-window size for the tweet. This is
regarded as the time when the diffusion will be almost extinct.
As a result, about 90% of the diffusion data is retained in the data
store.

The system calculates diffusion extinction to determine the
time-window size when it finds a tweet one hour after it was
posted. If only a few retweets for a tweet are found, the tweet is
unlikely to start being retweeted in the future. Hence, if the
retweet count is less than a threshold, the corresponding
diffusion data is considered to be extinct.

B. Workload Control to Adjust for Bursts of Streaming Data
As shown in Figure 7, the volume of retweets tends to peak

at about 3 minutes following the posting of the original tweet.
The peak is particularly high for certain topics such as an
election, a World Cup match, an Olympics event, and a disaster.
This burst of data could result in the system trying to process
thousands or tens of thousands of tweets simultaneously, which
would cause a lack of machine resources in the stream server.
Workload control is used to adjust for such bursts of streaming
data.

Figure 7. Volume of retweets within first five minutes of tweet posting.

This control includes removing less important diffusion data
from the in-memory data store even if the corresponding tweet
has not yet reached the estimated point of diffusion extinction.
This is currently done by using the LRU (least recently used)
method, a standard method of data eviction, to remove the

Input S(t), R(t), Tweetid_list = [t1, t2, …, tm]

Output result_candidate //top k user list

1. result_candidate = [];

2. For each i=1,...,m, Do

1. If !S(ti).hasNext() Then continue;

2. Retrieve (ui, wi) from S(ti);

3. If result_candidate.contains(ui) Then continue;

4. V := sum of w in each R(tj) for ui // j=1,...,m

5. Vk := sum of w in the k-th candidate in

result_candidate;

6. If (V > Vk) Then update result_candidate

by (ui, V).

7. V’ := sum of the minimal value of w in S(ti)

that have been retrieved so far // i=1,...,m

8. If (V >= Vk) Then break;

3. End For

Tweet

Time

ReTweetReTweet ReTweet ReTweet

Time-window for Tweet1

Tweet ReTweetReTweet ReTweet

Tweet1

Tweet2

Time-window for Tweet2

0 20 40 60 80 100
Delay time (min)

N
o
.
o
f
re
tw
e
e
ts

diffusion data that was least recently retweeted. This is not the
optimal method, however, since other relevant information such
as the total number of retweets and the user who posted the tweet
are not considered. Future work includes defining the
importance of each tweet and using that information instead of
LRU information for data eviction.

V. PERFORMANCE EVALUATION

A. Methodology
(1) Query processing

We measured the response times for the three queries
described in Section 3. For Query 3, we compared performance
with and without using the special view. We used the same SQL
statements and the database tables shown in Section 3. The
response time was taken as the average response time for the
same query repeated 10,000 times. (The first 1,000 times were
ignored.)

(2) Customized time window

We determined the time of diffusion extinction by fitting a
log-normal distribution, as described in Section 4.1. We
estimated µ and σ using the diffusion data for the first hour from
when the original tweet was posted.

Our test server had two Xeon X5670 CPUs (2.93 GHz, 6
cores) with 32 GB of RAM, running Red Hat Linux 5.5. The
measurement client ran on the same server. The H2 database
[10] was used as the in-memory mode. Indexes were created for
the TweetID field in both the RETWEET and ORIGIN_TWEET
tables and for the SRC field in the RETWEET table. The view
for the top-k ranking in Query 3 was implemented in Java (IBM
J9 VM JRE 1.7.0). The fit for the log-normal distribution was
computed using R [11].

B. Experimental Data
We used retweets of Twitter messages in Japanese for the

period from 1/19/2014 to 2/11/2014. This period included the
Tokyo governor’s election, which was one of the first elections
in Japan for which “Internet campaign activities” were permitted.
We collected the tweets and retweets that were posted from the
five official accounts representing the candidates in the election
as well as those of heavy social media users. A total of 1611
tweets were retweeted, and the total retweet count was 76,593.

C. Experimental Results

1) Query processing results
Figure 8 shows the average response times for Queries 1, 2,

and 3. For Query 1, we specified one tweet ID in the WHERE
clause. For Queries 2 and 3, we specified 100 different tweet IDs
in each query. The tweet IDs were chosen at random. The
response times for Queries 1 and 2 were 0.2 ms and 0.4 ms,
respectively. This indicates that query processing was extremely
fast for these queries. The response time for Query 3 was much
longer, probably because the computational cost was higher for
the aggregation operations.

Figure 8. Query response times.

The average response time for Query 3 when the special
view for user rankings was used is plotted in Figure 9. The
number of specified tweet IDs was increased from 100 to 500.
The blue dashed line shows the results without the view, and the
red solid line shows the results with the view. The query
performance was greatly improved by using the view. The
maximum performance difference was 64 times faster when the
number of tweet IDs was 100. The response time without the
view increased in proportion to the number of specified tweet
IDs. The response time with the view also increased, but it was
still much shorter than without the view.

Figure 9. Query 3 response time using view for user rankings.

2) Diffusion extinction estimation results
To evaluate the effectiveness of diffusion extinction, we used

the top 50 most retweeted tweets in our data set. We fitted the
distribution of each tweet to the probability density function of
the log-normal distribution, estimated the retweet curve, and
calculated the 90 percentile point for that curve to determine the
time-window size for the tweet. We counted the total number of
retweets within the time window and calculated the percentage
of those retweets to the total number of retweets. The total count
was for one week’s worth of data.

We calculated the average percentages for the 50 tweets.
Since our method covers about 90% of the retweets, we retained
about 90% of the diffusion data in the in-memory data store as
expected. We also calculated the average percentages using a
fixed period of time to determine the diffusion extinction for all
50 tweets. We set the fixed time (= t) to 1, 10, 11, and 12 hours.

Table 1. Average coverage of retweet diffusion

t=1 t=10 t=11 t=12 our method

55.0% 89.1% 89.9% 90.6% 89.9%

As shown in Table 1, when t was 1 hour, the average
coverage was only 55%. This indicates that about a half of the
retweets occurred after more than one hour from the original

tweet posting. When t was 11 hours, the coverage was the same
as with our method. In this case, the diffusion data for each tweet
was stored in the data store for 11 hours because the time-
window size was set to 11 hours.

Figure 10 shows the time interval needed to cover 90% of all
retweets for each tweet. The green and yellow bars show the
actual 90% point and the point estimated with our method,
respectively. The results with our method were reasonably close
to the actual results for each tweet. For tweet 18, the actual point
was about seven days later. The tweet was retweeted at least a
few times every day, making it difficult to estimate the
extinction because our method works with the retweet data
posted within one hour from the original posting time. This
weakness can be overcome by integrating another propagation
estimation model. The average difference between the actual and
estimated results was 368 minutes, while the difference between
the actual results and 660 minutes (= time-window size of 11
hours) was 535 minutes. This indicates that the accuracy of our
method is significantly better than that with a fixed time-window
size.

Figure 10. Time interval needed to cover 90% of all retweets.

VI. RELATED WORK
There have been many studies of information diffusion

analysis in social networks.

Truthy [12] is a Web service that tracks political information
on Twitter. It provides real-time analysis of information
diffusion in social media by mining, visualizing, mapping,
classifying, and modeling massive streams of public
microblogging events. TweeQL [13] is a SQL-like query
interface for streaming Twitter data. The streaming API enables
users to issue long-running HTTP requests with keyword,
location, or user ID filters and collect the matching tweets that
appear in the stream. It uses windowed select-project-join
aggregate queries over the input stream and supports user-
defined functions for deeper processing of tweets.

There are also information diffusion analysis services, but
their descriptions do not reveal their performance for processing
social media data and instead focus on the analysis algorithm
used. Our focus here is on the development of a real-time
analysis system and its query processing performance.

Gupta et al. [14] used materialized views to quickly access a
copy of the target data. They are created by incrementally

updating the differential data. Charles et al. [15] proposed
storing database queries in cache and using offline analysis of
the queries and updates. The structure of our special view is
different, and an efficient maintenance method for updating the
view would improve our system.

VII. CONCLUSION AND FUTURE WORK
Our proposed diffusion analysis system enables real-time

analysis of streaming social data. It helps companies to respond
quickly on the basis of an analysis of user behaviors and to
quickly detect trending tweets, which is important because most
of the information shared through social media quickly loses its
impact. An in-memory database is used to collect the diffusion
data, and the time window is customized by estimating diffusion
extinction so that the best time to remove stale data can be
effectively determined.

Measurement of the query performance of our system using
typical analysis scenarios showed that the processing of simple
access patterns was extremely fast. The special view we created
for complicated queries such as ranking-related queries
effectively improved performance. Evaluation of the time-
window customization used to determine diffusion extinction
showed that the accuracy was much better than with a fixed
time-window size.

Future work includes evaluating the workload control
method used to handle bursts of retweet data.

[1] Top 10 monitoring tools for Twitter & other social media platforms -

http://socialmedia.biz/2014/02/12/top-10-monitoring-tools-for-twitter-
other-social-media-platforms/

[2] M. Mathioudakis and N. Koudas, “TwitterMonitor: trend detection over
the twitter stream.” SIGMOD, pp. 1155–1158, 2010.

[3] John D. Burger, John Henderson, George Kim, and Guido Zarrella,
“Discriminating gender on Twitter.” EMNLP, pp. 1301–1309, 2011.

[4] HBase http://hbase.apache.org/

[5] Neo4j http://www.neo4j.org/

[6] Evaluation of in-memory database TimesTen
http://zenodo.org/record/7566/files/CERN_openlab_report_Endre_Andr
as_Simon.pdf

[7] Ronald, F., Amnon, L., and Moni, N., “Optimal aggregation algorithms
for middleware.” PODS, pp. 102–113, 2001.

[8] Haewoon, K., Changhyun, L., Hosung, P., and Sue B., M, “What is
Twitter, a social network or a news media?” WWW, pp. 591–600, 2010.

[9] Asur, S., Huberman, B. A., Szabo, G., and Wang, C., “Trends in social
media: persistence and decay.” ICWSM, 2011

[10] H2 Database Engine http://www.h2database.com/html/main.html

[11] R http://www.r-project.org/

[12] Ratkiewicz, J., Conover, M. Meiss, M. Goncalves, B. Patil, S., Flammini,
A., and Menczer, F., “Truthy: Mapping the spread of astroturf in
microblog streams.” WWW, pp. 249–252, 2011.

[13] Adam, M., Michael, S. B, Osama, B., David R. K., Samuel, M., and
Robert C. M., “Processing and Visualizing the Data in Tweets.” SIGMOD,
pp. 21–27, 2012

[14] Gupta, A., Mumick, IS., and Subrahmanian, VS.: “Maintaining views
incrementally.” SIGMOD, pp. 157–166 1993.

[15] Charles, G., Amit, M., Anastasia, A., Bruce, M., Todd, M., Christopher,
O., and Anthony, T., “Scalable Query Result Caching for Web
Applications.” VLDB, pp. 550–561, 2008.

