
A Study of Effective Replica Reconstruction Schemes at Node Deletion for HDFS

Asami Higai
Ochanomizu University

2–1–1, Otsuka, Bunkyo-ku, Tokyo 112–8610, JAPAN
asami@ogl.is.ocha.ac.jp

Atsuko Takefusa
National Institute of Advanced Industrial

Science and Technology(AIST)
1–1–1, Umezono, Tsukuba, Ibaraki 305–8568, JAPAN

atsuko.takefusa@aist.go.jp

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology(AIST)
1–1–1, Umezono, Tsukuba, Ibaraki 305–8568, JAPAN

hide-nakada@aist.go.jp

Masato Oguchi
Ochanomizu University

2–1–1, Otsuka, Bunkyo-ku, Tokyo 112–8610, JAPAN
oguchi@computer.org

Abstract—Distributed file systems, which manage large
amounts of data over multiple commercially available ma-
chines, have attracted attention as a management and pro-
cessing system for big data applications. A distributed file
system consists of multiple data nodes and provides reliability
and availability by holding multiple replicas of data. Due to
system failure or maintenance, a data node may be removed
from the system and the data blocks the removed data
node held are lost. If data blocks are missing, the access
load of the other data nodes that hold the lost data blocks
increases, and as a result the performance of data processing
over the distributed file system decreases. Therefore, replica
reconstruction is an important issue to reallocate the missing
data blocks in order to prevent such performance degradation.
The Hadoop Distributed File System (HDFS) is a widely used
distributed file system. In the HDFS replica reconstruction
process, source and destination data nodes for replication are
selected randomly. We found that this replica reconstruction
scheme is inefficient because data transfer is biased. Therefore,
we propose two more effective replica reconstruction schemes
that aim to balance the workloads of replication processes.
Our proposed replication scheduling strategy assumes that
nodes are arranged in a ring and data blocks are transferred
based on this one-directional ring structure to minimize the
difference of the amount of transfer data of each node. Based
on this strategy, we propose two replica reconstruction schemes,
an optimization scheme and a heuristic scheme. We have
implemented the proposed schemes in HDFS and evaluated
them on an actual HDFS cluster. From the experiments, we
confirm that the replica reconstruction throughput of the
proposed schemes show a 45% improvement compared to
that of the default scheme. We also verify that the heuristic
scheme is effective because it shows performance comparable
to the optimization scheme and can be more scalable than the
optimization scheme.

Keywords-HDFS; distributed file system; replica; reconstruc-
tion; heuristic; optimization;

I. INTRODUCTION

Large amounts of data, generated from high quality sensor
networks, social network services, and high performance

scientific experimental tools, such as genome sequencers,
require efficient“ Big Data ”management and processing
in various fields of commerce and scientific computing,
such as high-energy physics and life information sciences.
Distributed file systems, which manage large amounts of
data over multiple commercially available machines, are
widely used for such Big Data processing. In order to
achieve high scalability and availability, a distributed file
system consists of multiple data nodes, each depending on
different system requirements, and each data node manages
blocks of the data and their individual replicas. However,
it is difficult to operate all of these data nodes without any
failures. Some data nodes may be unstable due to system
failure or maintenance.

In a distributed file system, data are replicated and the
data, including their replicas, are divided into data blocks
and separately stored for reliability and availability. When a
data node failure has been detected, the data blocks stored
in the data node are lost and the access load of other data
nodes, which hold the lost data blocks, increases, so that
the performance of data processing over the distributed file
system decreases. Therefore, an important issue is effec-
tive replica reconstruction that reallocates the missing data
blocks to other stable data nodes in order to prevent such
performance degradation.

The Hadoop Distributed File System (HDFS) [1] , which
is a part of the Apache Hadoop [2] project, has been a
widely used open source distributed file system. In the HDFS
replica reconstruction process, source and destination data
nodes used to send and receive a missing data block are
chosen at random, respectively. As a result, sending and
receiving processes concentrate on a certain data node. To
perform replica reconstruction effectively, it is necessary to
balance the process workloads of each data node by choosing
suitable source and destination data nodes.

To address this issue, we propose effective replica re-

construction schemes, which aim to balance workloads
of copying processes between source and destination data
nodes. Our proposed schemes applies to a basic strategy
based on a one-directional ring structure, that each data
node receives data blocks from the previous data node and
sends data blocks to the next data node. Based on this
strategy, the proposed schemes, optimization and heuristic,
aim to minimize the difference of the amount of transfer data
of each data node, and select a source data node, which
holds a missing data block. In the optimization scheme,
we define this replica reconstruction problem as 0-1 integer
programming and solve the problem with an optimization
solver. In the heuristic scheme, we select the source data
node in a heuristic manner.

We have implemented the two proposed schemes in HDFS
and evaluate our proposed schemes in an actual HDFS
cluster composed of seven nodes. From the experiments,
we confirm that the replica reconstruction throughput of
the proposed schemes improves by 45% compared to that
of the default scheme and the load of each data node
can be balanced by eliminating the bias of data transfer.
We also verify that the performance of the heuristic and
optimization schemes are comparable. We confirm that the
heuristic scheme is very effective because it can be more
scalable than the optimization scheme.

This paper is organized as follows: Section 2 describes the
HDFS replica reconstruction scheme and its problems. Sec-
tion 3 explains our proposed replica reconstruction schemes:
an optimization scheme and a heuristic scheme. Section
4 evaluates our proposed schemes on an actual HDFS
cluster. Section 5 discusses the problems to be addressed
in the future. Section 6 introduces related work. Finally, we
conclude in Section 7.

II. REPLICA RECONSTRUCTION FOR HDFS

A. Node Decommission and Deletion for HDFS

HDFS is a clone of the Google File System (GFS) [3]
developed by Google. HDFS is based on a master and
worker architecture and consists of a single NameNode and
multiple DataNodes. The NameNode stores the metadata
of files and manages all the nodes in the cluster, and the
DataNodes store data and perform MapReduce-based data
processing. Each file is divided into blocks, which is the
minimum unit, and the blocks are replicated. Their replicas
are separately stored on the other DataNodes for reliability
and availability.

When a DataNode is removed from a cluster, HDFS keeps
the number of replicas specified in a replication factor by
replicating missing blocks from the DataNode to the other
remaining DataNodes. There are two ways of removing
nodes from a cluster for HDFS. One is node decommission
and the other is node deletion.

Node decommission is the way that a DataNode is
removed from a cluster after replica reconstruction. The

decommissioned node itself participates in the replica recon-
struction process. This would be the case in which nodes
are removed from a cluster intentionally. For example, to
shrink a cluster scale and initiate the shutdown of an unstable
DataNode that causes errors frequently.

Node deletion is the way that a DataNode is removed from
a cluster before replica reconstruction. The DataNode itself
must not participate in the replica reconstruction process.
This would be the case in which a DataNode is removed
from a cluster unexpectedly. For example, due to node failure
or trouble with a network connection,

B. HDFS Replica Reconstruction

When node decommission or deletion is detected, HDFS
performs replica reconstruction, which copies the data the
DataNode holds to the other DataNodes. The process
proceeds by unit of blocks. NameNode makes all deci-
sions regarding this block replication scheduling. NameNode
chooses source and destination DataNodes for replications,
and periodically transfers replication instructions to each
source DataNode. The source DataNode transfers the blocks
to the specified destination DataNode based on the instruc-
tions. The destination DataNode sends an acknowledgement
to the source DataNode after finishing the copying of the
block, and then the source DataNode sends an acknowl-
edgement to the NameNode. This phase continues repeatedly
until all of the blocks that are missing are replicated.

The number of instructions which the NameNode
transfers to the DataNodes equals the product of the
number of active DataNodes in the cluster and the
REPLICATION_WORK_MULTIPLIER_PER_ITERATION
parameter. We call this parameter N work in this paper.
The NameNode cannot provide instructions totalling
more than this value. This scheduling process and the
data transmission process are performed in parallel.
The number of data blocks that each DataNode can
transfer to the destination DataNode without receiving an
acknowledgement equals the dfs.max-repl-stream
parameter. We call this parameter N stream in this paper.
N work is a hard-coded parameter in FSNamesystem.java
of the ReplicationMonitor package. N stream is a
property we can specify explicitly. The default values of
these parameters are shown in Table I.

Table I
DEFAULT VALUES OF THE PARAMETERS

RELATING TO THE REPLICATION PROCESS

Name Description Default value

N work
The number of instructions which

the NameNode can transfer at one time 2

N stream
The number of blocks

each DataNode can transfer at one time 2

C. HDFS Replica Reconstruction Issue

When all DataNodes belong to the same rack, NameNode
selects a source DataNode from the DataNodes which hold
a copy of the missing blocks, at random, and a destination
DataNode, which does not hold the block, at random. This
replica reconstruction scheme may cause a concentration of
the data transfer process on a few DataNodes. In order to
clear this concern we investigated the disk I/O throughput of
each DataNode and the number of blocks that each DataN-
ode received in the HDFS replica reconstruction process,
using an HDFS cluster that consists of a single NameNode
and six DataNodes connected by a Gigabit Ethernet switch.
We use node deletion as the method for removing a DataN-
ode from the cluster. In this experiment, the block size and
replication factor are 64 MByte and three, respectively.

We acquired the disk I/O throughput every one second
using the linux iostat command from all the DataNodes,
and calculated the simple moving averages of five seconds.
And then we counted the number of blocks that each
DataNode received, in every one second. This information
is derived from the hadoop-$user-datanode.log files in each
DataNode. Aggregated disk I/O throughput of the five re-
maining DataNodes is shown in Figure 1. The vertical axis
represents the disk I/O throughput in MByte/sec and the
horizontal axis represents the time in sec. The number of
blocks that each DataNode received is shown in Figure 2.
The vertical axis represents the number of blocks and the
horizontal axis represents the time in sec. N stream is two
as described in II-B, so it seems an ideal state in which each
DataNode is receiving two blocks during the experiment in
terms of load balancing.

However, Figure 2 shows that the numbers of blocks
each DataNode is receiving are quite different and unstable.
In the time period from 80 to 100 seconds, the number
of blocks DataNode5 had received increases, that is, the
destination DataNodes to be replicated are concentrated.
At this time, the aggregated disk I/O throughput of all
DataNodes decreases and the overall replication process is
stagnating. These results show that replica reconstruction
with the default scheme for HDFS is inefficient because of
unbalanced sending and receiving processes.

III. PROPOSAL FOR AN EFFECTIVE REPLICA
RECONSTRUCTION SCHEME

In order to solve the replica reconstruction issue with
the HDFS default scheme described in the previous section,
it is necessary to balance the process workloads of each
DataNode by choosing source and destination DataNodes
properly. Therefore, we propose a scheduling strategy for
replica reconstruction that aims at processing efficiently
by choosing source and destination DataNodes based on a
onedirectional ring structure, and balancing the workload.
We propose two schemes: one is an optimization scheme and
the other is a heuristic scheme. In the optimization scheme,

0

100

200

300

400

500

0 50 100 150 200

th
ro

u
gh

p
u

t
[M

B
/s

ec
]

!me [sec]

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Figure 1. Aggregated disk I/O throughput of five DataNodes.

0

2

4

6

8

0 50 100 150 200

th
e

 n
u

m
b

e
r

o
f

b
lo

ck
s

!me [sec]

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Figure 2. The number of blocks each DataNode received.

we define this replica reconstruction problem as 0-1 integer
programming and solve the problem with an optimization
solver. In the heuristic scheme, we select the source data
node in a heuristic manner.

A. Overview of the Basic Strategy

All DataNodes are assumed to be in the same rack. DataN-
odes are arranged in a ring structure and each DataNode
transfers data in one direction based on the ring structure
shown in Figure 3. In this manner, the destination DataNode
is always the next DataNode of each source DataNode in the
ring structure. This one-directional ring strategy enables us
to maintain a constant number of blocks that each DataNode
is sending and receiving even if the transfer timing of each
block is different. Further, because of the ring structure, the
destination DataNode is determined uniquely by determining
the source DataNode. Therefore, when choosing the source
DataNode from which to send the missing blocks, our

Figure 3. DataNodes arranged in a one-directional ring structure

proposed scheme only requires the number of blocks which
each DataNode sends to be equal in order to eliminate the
bias of the sending and receiving process.

In replica reconstruction with the HDFS default scheme,
the scheduling and data transfer are carried out in parallel.
In our replica reconstruction with our proposed scheme,
data transfer is carried out after the scheduling of all of
replicas that are missing is completed. This can be realized
by specifying a sufficiently large value to N work described
in section II-B.

B. Optimization Scheme

We formulate the replica reconstruction problem as 0-1
integer programming in the replication scheduling strategy
we proposed in section III-A. As described in section III-A,
all DataNodes are arranged in a one-directional ring structure
with transfer of missing blocks to the next DataNode. The
object of this replica reconstruction problem is to equalize
the number of blocks that each DataNode sends, that is, to
minimize the difference in the number of blocks that each
DataNode sends.

We define the symbols. The sets of DataNode i and the
sets of block j which are required to be replicated are
denoted by D and B respectively. The total number of
DataNodes, the total number of blocks which are required to
be replicated, and the replication factor are denoted by Ndn,
Nb, and Nreplica (≥2) respectively. The average number of
blocks Navg , which each DataNode sends, equals Nb/Ndn.
The current block positions are represented by the matrix
Currenti,j (i ∈ D, j ∈ B). If DataNode i holds the block
j, Currenti,j equals 1, otherwise Currenti,j equals 0.
The adjacency of DataNodes is represented by the matrix
Adjfrom,to (from, to ∈ D). If DataNode from can send
to DataNode to, Adjfrom,to equals 1, otherwise Adjfrom,to

equals 0. The scheduling results of replica reconstruction
is denoted by the variable Xfrom,to,j . If DataNode from
sends a block to DataNode to for replication, Xfrom,to,j

becomes 1, otherwise Xfrom,to,j becomes 0. zi is the
variable that is used to minimize the difference in the number
of blocks that each DataNode i sends. Now, replica recon-
struction scheduling based on one-directional ring structure
is formulated as follows.

It is the optimization scheme that solves Xfrom,to,j

satisfying the above formulation and employs the result

Minimize ∑
i∈D

zi (1)

Subject to

Alli,j = Currenti,j +
∑

from∈D

Xfrom,i,j

∀i ∈ D, ∀j ∈ B (2)
Alli,j ≤ 1, ∀i ∈ D, ∀j ∈ B (3)∑
i∈D

Alli,j = Nreplica, ∀j ∈ B (4)

Xfrom,to,j ∈ {0, 1}, ∀from, ∀to ∈ D, ∀j ∈ B (5)

Currenti,j −
∑

to∈D

Xi,to,j >= 0

∀i ∈ D, ∀j ∈ B (6)∑
j∈B

Xfrom,to,j <= M · Adjfrom,to

∀from,∀to ∈ D (7)∑
j∈B

Xfrom,to,j − Navg ≥ −zi

∀from,∀to ∈ D (8)∑
j∈B

Xfrom,to,j − Navg ≤ zi

∀from,∀to ∈ D (9)
zi ≥ 0, ∀i ∈ D (10)

for replica reconstruction scheduling. Objective function (1)
minimizes the difference of the number of blocks that each
source DataNode transfers. Equation (2) defines Alli,j , that
is, the placement of all blocks after transfer. Constraint (3)
states that the same block must not be arranged in the
same DataNode in the placement of blocks after transfer.
Constraint (4) states the total number of replicas of each
block must equal Nreplica. Constraint (5) states Xfrom,to,j

is 0 or 1. Constraint (6) states the source DataNode has
the block to transfer. Constraint (7) states DataNode from
and DataNode to are in the adjacency which DataNode
from can transfer to DataNode to in the one-directional
ring. If there is no adjacency between DataNode from
and DataNode to, the number of blocks which DataNode
from can transfer to DataNode to is 0, otherwise, it is a
positive value. M is a sufficiently large value, which does
not exceed the total number of blocks, so we set M to Nb

here. Constraints (8), (9) state the lower bound and the upper
bound of the difference between the number of blocks and
the average number of blocks Navg , respectively. Constraint
(10) states zi is greater than or equal to 0.

C. Heuristic Scheme

Because it is impractical to implement the optimization
scheme since it generally takes a long time to find the
optimal solution, we propose a heuristic scheme to ob-
tain replica reconstruction scheduling results. The heuristic
scheme aims to equalize the number of blocks that each
DataNode transfers. We describe the procedure below.

(1) DataNodes, which hold the block to be replicated,
are the candidates to be designated as the source
DataNode. However, if the next DataNode in the ring
structure already holds the same block, the DataNode
is excluded from the candidates.

(2) Give the priority k to the blocks to be replicated. For
each replicated block, the priority k (0≤k≤replication
factor-2) is calculated. k is the number of source
DataNode candidates excluded in (1). Then the repli-
cated blocks are grouped by k.

(3) Execute the following process for each group in de-
scending order of priority k. For each block in each
group, choose the source DataNode from the candi-
dates. Here, the total number of times a DataNode
has been chosen as the source DataNode is counted
and the DataNode with the minimum total number is
selected as the source DataNode.

After step (1), step (2) is executed for all of the replicated
blocks, and then step (3) is executed. In step (3), the number
of times each DataNode has been chosen as the source
DataNode is balanced by scheduling the blocks whose
number of candidates is fewer at first.

For example, when the replication factor is set to three,
the number of candidates is two for each block. However,
if the next DataNode in the ring structure holds the block
already, the DataNode is excluded from the candidates,
so that the number of the candidates equals one, and the
source DataNode is determined uniquely. If such blocks are
scheduled later in the scheduling process, it may happen that
the DataNode as the source is chosen too often. To avoid
the case, we define the priority k for each block.

IV. EVALUATION EXPERIMENTS

We implemented both the optimization scheme and the
heuristic scheme into the replica reconstruction module in
HDFS. In order to evaluate the performance of the replica
reconstruction with each scheme, we measure the following:

1) Replica reconstruction throughput
2) The number of blocks each DataNode transfers
3) The computation time needed to find the optimal

solution
1) indicates the data transfer rate among DataNodes for

the reconstruction. 2) examines and evaluates the bias
of the volume of processing for sending and receiving.
3) examines and evaluates if the optimization scheme is
practical.

Table II
HDFS CLUSTER NODE SPECIFICATIONS

OS Linux 2.6.32-5-amd64 Debian GNU/Linux 6.0.4
CPU Quad-Core Intel(R) Xeon(R) CPU @ 1.60GHz
Main Memory 2GByte
HDD 73GByte SAS × 2(RAID0)
RAID Controller SAS5/iR
Network Gigabit Ethernet

Table III
MEASUREMENT PARAMETERS

Block size 16, 32, 64, 128, 256 MByte
The number of DataNodes six, including the deleted one
Replication factor 3
The amount of data in HDFS 50 GByte*3(replication factor)

A. Overview of Experiments

We used seven nodes on which we installed Hadoop-
1.0.3 on an actual cluster. One of them is designated as
a NameNode and the rest are DataNodes. TableII shows the
specifications of the nodes we used for the measurements.
All nodes are connected by a Gigabit Ethernet and belong
to a single rack.

With respect to IV-1)，2) mentioned above, for each
scheme, that is, the default scheme, heuristic scheme, and
optimization scheme, we examined the performance of
replica reconstruction at node deletion for block sizes 16,
32, 64, 128, 256 MByte. We define the replica reconstruction
throughput as follows.

Replica reconstruction throughput [MByte/sec]

=
the amount of data that the deleted DataNode holds [MByte]

execution time needed for replica reconstruction to complete [sec]

(11)

We are using the GLPK[4] optimization solver, which was
provided free of charge for the optimization scheme. We
copied five files of about 10 GByte to HDFS from the local
disk using the put option in each trial. The replication factor
is set to three, so the total amount of data, including replicas
in HDFS, is approximately 150 GByte, which corresponds
to about 25% of the capacity of the entire cluster. Table
III shows the parameters we used for the measurements.
The amount of data each DataNode holds is balanced by a
balancer which is implemented as a Hadoop daemon before
each trial. Therefore, in each trial, the amount of data each
DataNode holds is almost the same, but the placement of
each data item differs.

With respect to IV-3), we examined the computation time
required to find the optimal solution of this 0-1 integer pro-
gramming problem by changing the number of DataNodes
and Blocks in the simulation. Table IV shows the number of
DataNodes and Blocks we used. 800 blocks corresponds to
the amount of data shown in Table III when the block size
is set to 64 MByte.

Table IV
MEASUREMENT PARAMETERS

The number
of DataNodes

The number
of blocks

The number of DataNodes changes
where

the number of blocks is fixed
5～25 800

The number of blocks changes
where

the number of DataNodes is fixed
10 800～4000

B. Experimental Results

1) Replica Reconstruction Throughput:
Figure 4 shows the replica reconstruction throughput at
node deletion with each scheme. The vertical axis represents
the replica reconstruction throughput in MByte/sec, and the
horizontal axis represents the block size. When the block
size is more than 64 MByte, the throughput is improved
by the proposed schemes. The throughput of the heuristic
scheme shows a 44% improvement compared to that of
the default scheme, and that of the optimization scheme
shows a 45% improvement. When the block size is smaller,
such as 16 and 32 MByte, the throughput of each scheme
does not differ. As we mentioned in section II-B, this is
because the amount of data that each DataNode can transfer
without receiving an acknowledgement from the destination
DataNodes is limited by the number of blocks, N stream.
Therefore, in the case where block size is smaller, the
amount of data to be processed at one time is less. In such
a case, the DataNodes finish the processing instructed from
the NameNode sooner and are in the idle state, waiting
for the instructions of the replica reconstruction to be sent
periodically from the NameNode. That is, there is still
available disk bandwidth.

In order to investigate the effectiveness of the proposed
schemes in the case where the processing load is heavy
even though block size is small, we examined the replica
reconstruction at node deletion by changing N stream as
shown in Table V. The replica reconstruction throughput of
the experiments is shown in Figure 5. The vertical axis rep-
resents the replica reconstruction throughput in MByte/sec,
and the horizontal axis represents the block size and the
value of N stream. In the case where the process load is
heavy even though block size is small, the throughput of
the proposed schemes also show improvement, as shown
in Figure 5. It can be seen from Figures 4 and 5, the
replica reconstruction throughput of the heuristic scheme is
comparable to that of the optimization scheme. Therefore
the heuristic scheme is shown to be effective enough in this
experiment environment.

Figures 6 and 7 show the time series data of the disk I/O
throughput of each DataNode, and the number of blocks that
each DataNode received with the heuristic scheme, respec-
tively. In Figure 6, the vertical axis represents the disk I/O

0

20

40

60

80

100

120

140

160

180

200

16MB 32MB 64MB 128MB 256MB

th
ro

ug
hp

ut
 [

M
B

/s
ec

]

block size

Default shceme Heuris!c scheme Op!miza!on schemescheme

Figure 4. Replica reconstruction throughput at node deletion with each
scheme

Table V
THE VALUE OF N stream

Block size N stream
16MByte 8
32MByte 4

throughput in MByte/sec and the horizontal axis represents
time in sec. In Figure 7, the vertical axis represents the
number of blocks received and the horizontal axis represents
time in sec. As indicated in Figures 1 and 2, there was a large
difference in the number of blocks which each DataNode
received and the disk I/O throughput was unstable in the case
of the default scheme. However, with the heuristic scheme,
the number of blocks each DataNode received is stable to
2 or less and the disk I/O throughput of each DataNode is
relatively equally high and stable.

2) The number of blocks each DataNode transfers:
Table VI shows the number of blocks that each DataNode
transfers and the standard deviation, in the replica recon-
struction at node deletion with each scheme. As an example,
we pick up a single trial with a block size 64 MByte here.
Because the data placement is different in each trial, the
number of blocks that each DataNode transferred and the
standard deviation are also different slightly in each trial.
Table VII shows the average standard deviation of each trial
with each scheme. It can be seen from Table VII that the
number of blocks that each DataNode transfers is balanced
and the bias of volume of processing for sending and receiv-
ing is eliminated by our proposed schemes. The heuristic
scheme is also comparable to the optimization scheme in
terms of the bias of sending and receiving processing and
therefore we confirmed that the heuristic scheme is effective.

3) The computation time needed to find the optimal
solution:
We evaluate by simulation the computation time needed to

0

20

40

60

80

100

120

140

160

180

200

16MB_2 16MB_8 32MB_2 32MB_4

th
ro

u
gh

p
u

t
[M

B
/s

ec
]

block size and N_stream

Default shceme Heuris!c scheme Op!miza!on schemescheme

Figure 5. Replica reconstruction throughput at node deletion in the case
of changing N stream

Table VI
THE NUMBER OF BLOCKS THAT EACH DATANODE TRANSFERS AND THE

STANDARD DEVIATION.

Default
scheme

Heuristic
scheme

Optimization
scheme

DataNode1 78 78 78
DataNode2 79 79 79
DataNode3 84 78 79
DataNode4 85 79 79
DataNode5 67 79 78

Standard deviation 7.162 0.548 0.548

find the optimal solution of the 0-1 integer programming
problem formulated. Figure 8 shows the computation time
when the number of nodes changes but the number of blocks
is fixed. Figure 9 shows the computation time when the
number of blocks changes but the number of nodes is fixed.
From Figures 8 and 9, we confirm that the computation time
needed to find the optimal solution increases exponentially
with the increase of the number of nodes and linearly with
the increase of the number of blocks. Here, we define the
number of nodes as d and the number of blocks as b. The
complexity of the optimization scheme is O(b · d2), on the
other hand, the complexity of the default scheme and the
heuristic scheme is O(b).

In practice, because HDFS is used in large-scale envi-
ronment such as terabyte and petabyte scale, the number of
nodes and the number of blocks is also huge. Therefore, it
is found that the optimization scheme cannot scale. On the
other hand, the heuristic scheme is very efficient because
it is possible to achieve replica reconstruction throughput
comparable to the optimization scheme with a calculation
complexity of O(b).

V. DISCUSSION

In this study, we have focused on eliminating the bias of
data transfer and tackled the challenge of finding effective

0

100

200

300

400

500

0 50 100 150 200

th
ro

u
gh

p
u

t
[M

B
/s

ec
]

!me (sec)

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Figure 6. Aggregated disk I/O throughput of five DataNodes with the
heuristic scheme.

0

2

4

6

8

0 50 100 150 200

th
e

 n
u

m
b

e
r

o
f

b
lo

ck
s

!me (sec)

DataNode1 DataNode2 DataNode3 DataNode4 DataNode5

Figure 7. The number of blocks that each DataNode received with the
heuristic scheme.

Table VII
AVERAGE STANDARD DEVIATION OF THE NUMBER OF BLOCKS THAT

EACH DATANODE TRANSFERS.

Default
scheme

Heuristic
scheme

Optimization
scheme

Average
standard deviation 8.337 0.697 0.481

replica reconstruction schemes. However, in practice, the
replica reconstruction process is performed in the back-
ground, so it is necessary to avoid the situation that this
process occupies the bandwidth and reduces the performance
of the foreground process. Therefore, as future work, we
are going to attempt to perform the replica reconstruction
effectively while minimizing the influence on the foreground
process. And also we have been discussing the assumption
all nodes belong to a single rack. In practice, HDFS is
operated by configuring multiple racks. When there are
multiple racks in the HDFS cluster, multiple replicas are

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25

e
xe

cu
�

o
n

 �
m

e
 [

se
c]

the number of nodes

Figure 8. Computation time when the number of nodes changes, but the
number of blocks is fixed.

0

1

2

3

4

5

6

800 1600 2400 3200 4000

e
x
e

cu
�

o
n

 �
m

e
 [

se
c]

the number of blocks

Figure 9. Computation time when the number of blocks changes, but the
number of nodes is fixed.

placed according to the following replica placement policy:
The first replica is placed on the same node as the client. But
if the client is running outside the cluster, a node is chosen
at random. The second replica is placed on a different rack
from the first, chosen at random. The third replica is placed
on the same rack as the first, but on a different node chosen
at random. Further replicas are placed on random nodes in
the cluster. Therefore, with respect to replica reconstruction
we must consider the process between racks. We think we
can apply the replication scheduling strategy we proposed
even if there are multiple racks in an HDFS cluster. We are
assuming two one-directional ring structures: one is a ring
between racks in a cluster, and the other is a ring between
nodes in each rack. In replica reconstruction, if there is a
DataNode that holds a replica of missing blocks in the same
rack as the removed node, data transfer is executed based
on the one-directional ring between nodes in the rack, and
if not, data transfer is executed based on the one-directional
ring between racks in the cluster.

VI. RELATED WORK

A. Replication strategies

A lot of replication strategies for replica management
have been proposed. In general, data are replicated and their
replicas are stored on different data nodes for reliability and
availability. And it is important to decide the replication
factor properly, as well as where to place each replica.

Rahman et al. [5], Wang et al. [6], and Sato et al. [7]
proposed replication strategies based on file clustering for
Grid file systems. In the clustering strategy described in [7],
files are grouped according to each data processing, based on
the notion that the clustered files will be simultaneously used
by another data processing. Then replication times for each
file are minimized under given storage capacity limitations.
From the experiments, they showed the proposed strategy
was more efficient than a strategy that did not group related
files.

Sashi et al. [8] proposed a replication strategy for a re-
gionbased framework based on the popularity of files over a
geographically distributed Grid environment. By calculating
the access frequency of each file, they determine in which
region the replicas have to be placed and how many replicas
have to be placed, based on network bandwidth and response
time between regions. When file f is created, the access
frequency is calculated for each region and replicas are
placed in the regions with the large in a descending order of
the access frequency. Furthermore, in which site within the
region the file has to be placed is determined by considering
the number of requests and the response time. Therefore,
their strategy increases the data availability and also reduces
the number of unnecessary replications.

Tjioe et al. [9] proposed a replication strategy based on a
dynamic file assignment according to access load. First, they
assign files, which are sorted according to file size, to disks
in a round-robin fashion so as to distribute the load of all
files evenly across all disks. Then, creation and deletion of
replicas are occurred according to the load of all files and the
load on each disk. From the experiments, load balancing can
be achieved in an environment where user access patterns
change significantly.

Wenfeng et al. [10] proposed a replication strategy based
on a response time of each request. It determines replica
allocation and the number of replicas for each data in order
to satisfy the requirement of response time acquiring each
replica from every node, and minimize the replica degree,
the number of replica for each data, at the same time.
From the experiments compared to other strategies, the
proposed strategy could meet with every node ’s response
time requirements of a single request and also reduced the
number of replica degree. Moreover, it reduced the total
request response time at most and improved the overall
system performance.

As described above, most of replication strategies mainly

consider an access time, a storage capacity, and a replication
time. However, an overhead of a replication process on each
node itself is not considered well.

B. Network topology

Felix et al. [11] investigated distributing an OS image to
all machines efficiently in a large scale cluster. They in-
vestigated three logical network topologies: a star topology,
an n-ary spanning tree, and a multi-drop-chain. Figure 10
shows each network topology. The blue nodes indicate the
source of each data transfer and the green nodes denote a
switch, a connection point between all nodes. The above
pictures of each topology show a logical connectivity of all
nodes. From the evaluation experiments, the star topology
suffered from heavy link congestion at the server link in
the case of increasing the number of nodes. And the n-ary
spanning tree could not replicate data into multiple streams
efficiently enough because of the limitation of network
bandwidth. On the other hand, the multi-drop-chain could
replicate data regardless of increasing nodes and network
bandwidth. Therefore, they concluded the multi-drop-chain
topology was efficient to adopt a large-scale cluster.

Therefore, it is assumed that data transfer based on the
one-directional ring structure we applied is effective.

x x x

star n-ary spanning tree mul!-drop-chain

: source : switchx

Figure 10. Network topologies described in [11]

VII. CONCLUSION

In replica reconstruction with the default scheme for
HDFS, it is an issue that inefficient processing occurs
during the replica reconstruction because the processing is
concentrated on some of the DataNodes, even if source and
destination DataNodes are chosen at random. To address
this issue, we proposed two effective replica reconstruction
schemes intended to balance the workloads of each DataN-
ode by choosing source and destination DataNodes properly.
Our proposed replication scheduling strategy requires that
DataNodes are assumed to be arranged in a ring and data
blocks are transferred based on a one-directional ring struc-
ture to minimize the difference of the amount of transfer

data of each DataNode. Based on this strategy, we proposed
two replica reconstruction schemes, an optimization scheme
and a heuristic scheme. We have implemented the proposed
schemes in HDFS and evaluated them on an actual HDFS
cluster. From the experiments, we confirmed that the replica
reconstruction throughput of the proposed schemes showed
a 45% improvement compared to that of the default scheme,
and the load of each DataNode can be balanced by elimi-
nating the bias of data transfer. We also verified that the
heuristic scheme was comparable to the optimization scheme
with respect to the replica reconstruction throughput and
balancing the load of each DataNode. Furthermore, we con-
firmed that the heuristic scheme was very effective because
it can be more scalable than the optimization scheme.

REFERENCES

[1] Dhruba Borthakur. ”HDFS Architecture,” 2008 The Apache
Software Foundation.

[2] Tom White, Hadoop: The definitive guide, trans. Ryuji Tama-
gawa. O’Reilly JAPAN, 2010.

[3] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
(October 2003), ”The Google File System,” 19th Symposium
on Operating Systems Principles (conference), Lake George,
NY: The Association for Computing Machinery, CiteSeerX:
10.1.1.125.789, retrieved 2012-07-12.

[4] GLPK. http://www.gnu.org/software/glpk/.

[5] Rashedur M.Rahman, Ken Barker, Reda Alhajj, ”Study of
Different Replica Placement and Maintenance Strategies in
Data Grid,” In Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid, pp.171-178,
2007.

[6] Y. Wang and D. Kaeli, ”Load balancing using grid-based peer-
to-peer parallel I/O,” In Proceedings of IEEE International
Conference on Cluster Computing, pp.1-10, 2005.

[7] Hitoshi Sato, Satoshi Matsuoka, and Toshio Endo, ”File Clus-
tering Based Replication Algorithm in a Grid Environment,”
In Proceedings of the 9th IEEE International Symposium on
Computing and the Grid (CCGrid2009), pp.204-211, Shanghai,
China, May 2009.

[8] K. Sashi, Antony Selvadoss Thanamani, ”A New Replica
Creation and Placement Algorithm for Data Grid Environ-
ment,” International Conference on Data Storage and Data
Engineering, pp.265-269, 2010.

[9] J. Tjioe, R. Widjaja, A. Lee, and T.Xie, ”DORA:A Dynamic
File Assignment Strategy with Replication,” International Con-
ference on Parallel Processing 2009.

[10] W.F. Wang, W.H. Wei, ”A Dynamic Replica Placement Mech-
anism Based-on Response Time Measure,” Proc. of IEEE In-
ternational Conf. on Communications and Mobile Computing,
pp.169-173, 2010.

[11] Felix Rauch, Christian Kurmann, Tomas M.Stricker, ”Par-
tition Cast ― Modelling and Optimizing the Distribution of
Large Data Sets in PC Clusters,” Euro-Par 2000, LNCS 1900,
pp.1118-1131, 2000.

