
A Study of Replica Reconstruction Schemes for Multi-rack HDFS Clusters

Asami Higai
Ochanomizu University

2–1–1, Otsuka, Bunkyo-ku, Tokyo 112–8610, JAPAN
asami@ogl.is.ocha.ac.jp

Atsuko Takefusa
National Institute of Advanced Industrial

Science and Technology (AIST)
1–1–1, Umezono, Tsukuba, Ibaraki 305–8568, JAPAN

atsuko.takefusa@aist.go.jp

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology (AIST)
1–1–1, Umezono, Tsukuba, Ibaraki 305–8568, JAPAN

hide-nakada@aist.go.jp

Masato Oguchi
Ochanomizu University

2–1–1, Otsuka, Bunkyo-ku, Tokyo 112–8610, JAPAN
oguchi@computer.org

Abstract—Distributed file systems, which enable users to
manage large amounts of data over multiple commodity com-
puters, have attracted attention as a potential management
and processing system for big data applications. The Hadoop
Distributed File System (HDFS) is a widely used open source
distributed file system. In the HDFS, multiple replicas are
separately stored over the multiple data nodes for enhanced
availability. When a data node failure is detected, replica
reconstruction is performed. During this process, the access
load of the other data nodes, which hold the lost data
blocks, may increase, so that the overall performance of data
processing over the distributed file system decreases. Therefore,
an important issue is effective replica reconstruction in order
to prevent such performance degradation. In addition, HDFS
composed of multiple racks is needed to replicate the missing
blocks on a different rack according to the HDFS replica
placement policy, for the purpose of availability. We have
to take into account network bandwidth and fault tolerance
for such blocks which require data transfer between racks in
the cluster. In this paper, we propose replica reconstruction
schemes for a multi-rack HDFS cluster and evaluate the
effectiveness of our proposed schemes in multi-rack cluster
environments by simulation. In the proposed schemes, data
transfer in a rack is performed based on a one-directional
ring structure and inter-rack data transfer is performed in
a round robin manner. We control streams between racks as
giving the priority for the blocks which requires inter-rack
transfer. The experiments show that the proposed schemes are
effective for reduction of the execution time and improvement
of the fault tolerance. We also confirm that the performance
shows further improvement by controlling the number of
streams between racks properly and the execution times of
our proposed schemes show a 16% reduction in time required
compared to that of the default scheme.

Keywords-HDFS; distributed file system; replica reconstruc-
tion; data management;

I. I NTRODUCTION

Large amounts of data are generated from high quality
sensor networks, social network services, and high perfor-
mance scientific experimental tools, such as genome se-

quencer. Such ”Big Data” require efficient data management
and processing in various fields of commerce and scientific
computing, including high-energy physics and life informa-
tion sciences. Distributed file systems, which enable users
to manage large amounts of data over multiple commodity
computers, are widely used for such Big Data processing.
In distributed file systems, data are replicated and the data,
including their replicas, are separately stored on a large
amounts of data nodes for availability and reliability. When
a data node failure has been detected, the data blocks stored
on the faulty data node are lost. The access load of other
data nodes, which also hold the lost data blocks, increases,
so that the overall performance of data processing over the
distributed file system decreases. Therefore, an important
issue is effective replica reconstruction that reallocates the
missing data blocks to other stable data nodes in order to
prevent such performance degradation.

The Hadoop Distributed File System (HDFS) [2], which
is a part of the Apache Hadoop [1] project, is a widely
used open source distributed file system. Large-scale HDFS
clusters are generally configured in multiple racks to manage
the large amount of data expected. In such a multi-rack
configuration, replica data blocks are stored in two or more
racks according to the HDFS replica placement policy in
order to ensure data availability. Therefore, we have to
take into account network bandwidth between racks and
the fault tolerance of such blocks, which requires inter-rack
data transfer. In our previous work [3], we found that the
HDFS replica reconstruction scheme is inefficient because
source and destination data nodes for replication are selected
randomly, and we proposed replica reconstruction schemes
for single rack HDFS clusters, in which data blocks are
transferred based on a one-directional ring structure so that
the difference in the amount of transfer data for each node
is minimized. We confirmed that our proposals are effective
in an actual single rack HDFS cluster. However, the study of



replica reconstruction schemes in large-scale environments
is currently insufficient.

In this paper, we propose replica reconstruction schemes
for a large-scale HDFS cluster configured of multiple racks.
And we evaluate the proposed schemes in multi-rack envi-
ronments by simulation using the SimGrid [5] simulator,
which is a discrete event simulator for Grid and Cloud
Computing. In the proposed schemes, the source data nodes
for replication are selected to balance the load of each data
node with respect to data transfer among data nodes in a
rack, the destination data nodes are selected based on a
one-directional ring structure for which we have already
verified the effectiveness in [3]. On the other hand, with
respect to inter-rack data transfer, the destination data nodes
are selected from the data nodes included in the destination
racks based on a round robin scheme. We schedule these
missing blocks by controlling the number of streams be-
tween racks in the cluster and giving priority for the blocks
based on consideration of the loads of networks and data
nodes, and fault tolerance. From the experiments, we show
that the proposed schemes are effective for the reduction of
the execution times and improvement of the fault tolerance.
In addition, we confirm that the performance shows further
improvement by the reduction of the load of the destination
node by setting the number of streams between racks to the
number of nodes which belong to the rack, including the
destination node. The execution time of one of our proposed
schemes showed a 16% reduction compared to that of the
default scheme.

This paper is organized as follows: Section 2 describes
the HDFS replica reconstruction and the single rack replica
reconstruction schemes we have already proposed in [3].
Section 3 explains the proposed multi-rack replica replica-
tion schemes. Section 4 evaluates the proposed schemes by
simulation. Section 5 discusses the problems to be addressed
in the future. Section 6 introduces related work. Finally, we
conclude in Section 7.

II. HDFS REPLICA RECONSTRUCTION AND OUR

PREVIOUSLY PROPOSED SCHEMES

HDFS is a part of the Apache Hadoop [1] project and a
clone of the Google File System (GFS) [4] developed by
Google. HDFS is based on a master and worker architecture
and consists of a single NameNode and multiple DataNodes.
The NameNode stores the metadata of files and manages all
the nodes in the HDFS cluster, and the DataNodes store data
and perform MapReduce-based data processing. Each file is
divided into blocks, which is the minimum unit, and the
blocks are replicated in the cluster. Their replica blocks are
separately stored on the other DataNodes for fault tolerance.

A. Replica placement policy in multi-rack environments

When the HDFS cluster is configured as a single rack,
all replicas are stored in the same rack. However, a cluster

is generally configured using multiple racks having a large
number of DataNodes in order to manage large amounts of
data. Replicas are placed in two or more racks considering
reliability, availability and network bandwidth utilization. In
the latest versions Hadoop-2.2.4., they are placed according
to the following replica placement policy.

First replica
is placed on the DataNode where the writer to
HDFS is located. If the writer is not in the cluster,
a DataNode is selected randomly.

Second replica
is placed on a DataNode which is randomly se-
lected from a rack that is different from that of the
first replica.

Third replica
is placed on a DataNode which is randomly se-
lected from the same rack as that of the second
replica.

Further replicas
are placed on a DataNode which is selected ran-
domly.

B. Replica reconstruction process in HDFS

When a DataNode failure is detected, a replica reconstruc-
tion process is performed because the data blocks stored in
the DataNode are lost. In the case where an HDFS cluster
is configured as a single rack, the source and destination
DataNodes are selected randomly, and the data transfer
among the DataNodes in the rack is performed. On the other
hand, in the case where an HDFS cluster is configured of
multiple racks, the replica has to be placed in a suitable
rack according to the replica placement policy described in
the previous section. As an example, when the replication
factor, which is equal to the total number of replicas in the
HDFS cluster, is set to three and one DataNode fails, the
state of the remaining replicas is one of the following two
cases: One is the case where the remaining replicas are in
the same rack and the other is the case where the remaining
replicas are in different racks.

In the HDFS cluster, data transfer among DataNodes in
the same rack is given higher priority than data transfer
between racks on the assumption that inter-rack network
bandwidth is smaller than aggregated intra-rack network
bandwidth. Therefore, in the former case, intra-rack data
transfer is performed to replicate the missing block as shown
in Figure 1. On the other hand, in the latter case, inter-rack
data transfer is performed to replicate the missing block as
shown in Figure 2.

C. Our previously proposed replica reconstruction schemes
for single rack environments

In our previous work, we proposed effective replica recon-
struction schemes for single rack environments and showed
that the proposed schemes were, in fact, effective [3]. The



rack1 rack2 rackN

Figure 1. The intra-rack data trans-
fer case where data transfer among
DataNodes in a rack is performed.

rack1 rack2 rackN

Figure 2. The inter-rack data trans-
fer case where data transfer between
racks in the cluster is performed.

Figure 3. Data transfer based on a one-directional ring structure

replica reconstruction with the HDFS default scheme for
single rack environments is inefficient because the data
transfer is biased. In order to solve the issue, we proposed
more effective replica reconstruction schemes eliminating
the bias of the workload by transferring data based on
a one-directional ring structure shown in Figure 3. Then,
we intended to balance the amount of data blocks which
each DataNode sends and receives, as well as to prevent
disk I/O performance degradation due to the accesses from
multiple DataNodes. We proposed two schemes: one was an
optimization scheme formulated as 0-1 integer programming
and the other was a heuristic scheme for obtaining the
solution in a greedy manner.

From our experiments, we verified that the heuristic
scheme showed comparable performance to the optimization
scheme with a calculation complexity same as that of the de-
fault scheme while the optimization scheme was impractical
because the computation time required to find the optimal
solution increased exponentially.

In the next section, we describe the issues that occur in
the case of multiple racks and an extension of the proposed
heuristic scheme.

III. R EPLICA RECONSTRUCTION SCHEMES FOR

MULTI -RACK HDFS CLUSTERS

We extend our previously proposed heuristic scheme in
the HDFS cluster to the case where the cluster is configured
of multiple racks. The proposed schemes aim to perform
the process effectively and improve the fault tolerance by
balancing the amount of data transfer each DataNode sends

and receives, controlling the number of streams between
racks and designating the priority for the blocks.

A. The Selection algorithm for source and destination
DataNodes in replica reconstruction

In the replica reconstruction for multiple racks, as we
mentioned in section II-B, in the intra-rack data transfer
case (Figure 1), data transfer is performed based on a one-
directional ring structure, the same as in our previously
proposed scheme. In the inter-rack data tranfer case (Figure
2), the destination rack is selected first, then a DataNode
of the selected rack is assigned to the process in a round
robin fashion. We aim to balance the workload of each
DataNode by these strategies. In the case where an HDFS
cluster is configured of three or more racks, with respect to
data transfer between racks in the cluster, it is less likely
to become a performance bottleneck because the destination
rack can be selected from multiple racks. On the other hand,
in the case that HDFS cluster is configured of two racks,
there is a concern that performance may be degraded because
data transfer in these racks is performed both between racks
in the cluster as well as within a single rack. Therefore, in
this paper, we focus on and propose replica reconstruction
schemes in HDFS clusters configured of two racks and
investigate the characteristics.

In the replica reconstruction, a source DataNode for
replication is selected from the DataNodes which hold the
missing data and a destination DataNode to be used for
replication is selected from the DataNodes which do not hold
the missing data. We call the set of DataNodes which holds
the missing data ”Candidate Nodes.” And we call the racks
other than the one including the deleted DataNode ”normal
racks.” On the other hand, the rack including the deleted
DataNode is called the ”failure rack.” Note that another
DataNode in a failure rack is still capable of recovering
replication data.

Namely, with respect to inter-rack data transfer, the rack
including a source DataNode is ”normal rack” and another
rack including a destination DataNode is ”failure rack.”
When a failure rack receives a replica block from a normal
rack, it is assigned to a DataNode of that failure rack in a
round robin manner. The source and destination DataNodes
for missing replicas are selected according to the following
algorithm, in order to balance the workload of each DataN-
ode by equalizing the number of blocks each DataNode has
sent, with respect to intra-rack and inter-rack data transfer.

i Arrange the DataNodes in a ring structure logically,
per rack.

ii Select the source and destination DataNodes for all
blocks that need to be replicated as follows:

a) If intra-rack data transfer is possible:
Source: Select the DataNode with the smallest
number of intra-rack transferred blocks from
Candidate Nodes.



Destination: Uniquely determined by the ring
structure in the rack.

b) Else if inter-rack data transfer is necessary:
Source: Select the DataNode with smallest num-
ber of inter-rack transferred blocks from Candi-
date Nodes.
Destination: Select the DataNode in the failure
rack logically numbered in serial order with
value of the remainder of ”the total number
of blocks transferred from the normal rack to
the failure rack” divided by ”the number of
DataNodes included in the failure rack.”

B. The scheduling schemes for replica reconstruction

With respect to the missing replicas, source and des-
tination DataNodes were determined based on the above
algorithm. In addition, we perform scheduling that controls
the number of streams between racks by giving priority to
the inter-rack data transfer blocks in order for fault tolerance.

1) Prioritized and Non-prioritized schemes:If a failure
across the entire rack has occurred, the missing blocks
whose remaining replicas are in the same (failure) rack
are irreparable. Though it is less likely that such a failure
would occur, fault tolerance can be improved by scheduling
such missing blocks at the earliest opportunity. Therefore
we propose a scheme whereby the missing blocks whose
remaining replicas are in the same rack are scheduled on
ahead by giving a higher priority to them than to the missing
blocks whose remaining replicas are in different racks. We
call this scheme the ”Prioritized scheme.” On the other hand,
the scheme used when all missing blocks are scheduled in
any order without distinguishing the missing blocks of these
two states is called the ”Non-prioritized scheme.”

2) Control of the number of intra-rack and inter-rack
streams: There is a possibility that the network between
racks may become the bottleneck if network bandwidth is
occupied when data transfer is deluged between racks. The
number of blocks each DataNode can transfer to the destina-
tion DataNode at one time is originally two. After receiving
an acknowledgement from the destination DataNode, the
source DataNode can transfer the next blocks. Accordingly,
the maximum number of streams between racks is ”The
number of DataNodes of a normal rack * 2”. Therefore, if
the number of DataNodes in a rack is large, it is assumed that
the network between racks is heavily congested when we
use the Prioritized scheme. And the DataNodes of the failure
rack, which are assigned to the destination DataNodes in the
inter-rack data transfer case, have to perform not only intra-
rack data transfer (sending and receiving), but also inter-rack
data transfer (receiving only).

Therefore, in order to perform the data transfer of the
replica reconstruction process effectively by controlling
these processing loads, we propose two approaches; (a)

controlling the number of inter-rack streams, (b) controlling
the number of intra-rack streams.

In (a), when the actual number of streams between racks
has reached the maximum number of inter-rack streams, data
transfer within the rack is processed, even with prioritized
scheme. In (b), until the data transfers between racks are
completed, the number of sending streams of each DataNode
in the failure rack is limited to one, although the number of
sending streams of each DataNode is originally two. (b) is
applicable only to the prioritized scheme which carries out
the data transfer between racks first.

IV. EVALUATION EXPERIMENTS

We evaluated the performance of the proposed replica
reconstruction schemes for the HDFS cluster consisting of
two racks, comparing that with the default HDFS scheme.
In these experiments, we set the number of DataNodes in
each rack to be the same at first, and then we deleted one
of the DataNodes in one of the racks.

We measured the following:

Exp. 1. Execution times of Prioritized / Non-prioritized
schemes.
The execution time of replica reconstruction with-

out the stream control between racks.
Exp. 2. Fault tolerance of Prioritized / Non-prioritized

schemes.
The progress of the replication of the blocks which
are transferred between racks.

Exp. 3. Execution times of replication schemes with
stream control.
The execution time of replica reconstruction with

the stream control between racks. This experiment
is to identify the optimum number of streams
between racks.

A. Overview of experiments

For each scheme, we examined the performance of replica
reconstruction by simulation. We used SimGrid[5], which
is a simulator for distributed systems. Currently, SimGrid
does not support disk processing simulations. Therefore, we
represent disks as network links whose bandwidth is set to
disk I/O performance, as shown in Figure 4. Table I shows
the parameters we employed for the measurements. In the
experiments, we set up an HDFS cluster consisting of two
racks where the number of DataNodes are the same, and
we delete one of the DataNodes of one of the racks. The
number of DataNodes is set to 8, 16 and 32 per rack. We
set the block size to 67 MB, since the default block size
is 64 MB and transfer size, including the header, is 67 MB
in the default setting of the HDFS. The number of blocks
the deleted DataNode holds is set to be a constant average
number of blocks which each DataNode sends during a
replica reconstruction process, regardless of the number of
DataNodes. We assume the network within a rack is 1 giga



DataNode A1 DataNode A2

link A1 link A2

link

A1_disk

link

A2_disk

link routerA

Figure 4. Network topology

Table I
MEASUREMENT PARAMETERS

The number of DataNodes 8*2, 16*2, 32*2
Block size 67MB
Replication factor 3
The number of blocks
the deleted DataNode holds

80*(The number of all DataNodes
excluding the deleted one)

Network bandwidth in a rack 125MB/sec (1Gbps)
Network latency in a rack 0.1msec
Network bandwidth between racks 1.25GB/sec (10Gbps)
Network latency between racks 0.1msec
Disk I/O performance 67MB/sec

Ethernet and the network between racks is 10 giga Ethernet.
The disk I/O performance is set to 67 MB/sec based on
actual peer to peer replica reconstruction experiments with
two machines.

Table II shows the replica reconstruction schemes we used
for Exp. 1., Exp. 2. and Exp. 3.. For Exp. 3., we measured
the execution time of replica reconstruction changing the
maximum number of streams between racks from one to
twice the number of DataNodes in the rack.

B. Experimental Results

1) The execution times of Prioritized / Non-prioritized
schemes:Figure 5 shows the execution time of replica
reconstruction upon node deletion for each scheme. The
vertical axis represents the execution time of the replica
reconstruction in seconds, and the horizontal axis represents
the number of DataNodes. Figures 6, 7, 8 and 9 show
the progress of the replication of the blocks which are
grouped into data transfer between racks, intra-normal rack
and intra-failed rack with each scheme in the case where the
number of DataNodes is 8*2. The vertical axis represents the
progress of the replication as a percentage, and the horizontal
axis represents the time in seconds. Table III shows the
average replication time per block with each scheme in the
case where the number of DataNodes is 8*2.

Figure 5 shows that the execution time of replica recon-
struction is constant regardless of the number of DataN-
odes. The execution time ofNon-prioritized shows a 10%
reduction compared to that ofDefault. This is because
the imbalance among the replica reconstruction processes

Table II
THE REPLICA RECONSTRUCTION SCHEMES WE USED FOR EACH

MEASUREMENT

Exp. 1.
Exp. 2.

Default
Prioritized
Prioritized w/ intra (intra-rack stream control)
Non-prioritized

Exp. 3.

Prioritized w/ inter (inter-rack stream control)
Prioritized w/ intra and inter (intra-rack and
inter-rack stream control)
Non-prioritized w/ inter (inter-rack stream control)

Figure 5. The execution times of Default, Prioritized w/ and w/o intra-rack
stream control and Non-prioritized schemes.

is eliminated by the data transfer control based on the
one-directional ring structure within racks and the round
robin control between racks. Table III demonstrates that the
average replication time per block is decreasing and replicas
are reconstructed efficiently.

On the other hand, the execution time ofPrioritized
shows a 20% increase compared to that ofDefault. However,
by adding control on sending streams of DataNodes within
the failure rack (Prioritized w/ intra ), we achieved compa-
rable performance to that ofDefault. As discussed in section
III-B2, the performance degradation in the uncontrolled
Prioritized scheme (Prioritized ) is caused by overload in
DataNodes on the failure rack. On the DataNodes, disk
write bandwidth restricts each stream throughput and slows
down the replication. As a result, the process takes longer,
as shown in Table III. On the other hand, according to Table
III, the scheme with stream control (Prioritized w/ intra )
exhibits a relatively short time for replication. However,
total execution time is almost the same as that ofDefault.
This is because data transfer within the normal rack cannot
be carried out until data transfer between racks has been
completed, as shown in Figure 8 denoted as ’Between racks.’
Because the scheme gives higher priority to the replication
of missing blocks whose remaining replicas are in the same
rack.



Figure 6. The progress of the repli-
cation with Default (The number of
DataNodes:8*2)

Figure 7. The progress of the repli-
cation with Prioritized (The number
of DataNodes:8*2)

Figure 8. The progress of repli-
cation with Prioritized w/ intra-
rack stream control (The number of
DataNodes:8*2)

Figure 9. The progress of replication
with Non-prioritized (The number of
DataNodes:8*2)

2) The progress of replication of blocks which are in-
volved in data transfer between racks:Figure 10 shows the
progress of the replication of the blocks using each scheme
which performed data transfer between racks during replica
reconstruction upon node deletion. Figure 10 only shows
the case with the number of DataNodes equals to 8*2. The
cases with 16*2, 32*2 are omitted since they show the same
tendencies. Figure 10, shows that data transfer between racks
was completed very quickly in the cases of the ’Prioritized
scheme’ and the ’Prioritized scheme with streams within a
rack’. Note that this is behavior intended to improve the
fault tolerance. They have the disadvantage that the total
execution time for replica reconstruction is longer, but when
dealing with critical data, the behavior of these prioritized
schemes is preferable. There is not much difference between
Default andNon-prioritized with respect to the progress of
the replication. This is because the replication of the blocks
are processed in arbitrary order in both schemes.

3) The execution time of replica reconstruction with
stream control between racks:Figures 11, 12 and 13 show
the execution time of replica reconstruction using schemes
with inter-rack stream control. The vertical axis represents
the execution time of the replica reconstruction in seconds,
and the horizontal axis represents the number of streams
between racks.

Figures 11, 12 and 13 show that while the maximum

Table III
THE AVERAGE REPLICATION TIME PER BLOCK WITH EACH SCHEME

(THE NUMBER OF DATA NODES:8*2)

Inter-
racks

Intra
normal rack

Intra
failure rack

Default 5.65 3.11 6.68
Prioritized 6.08 3.95 5.91

Prioritized w/ intra 4.29 3.95 4.25
Non-prioritized 4.69 2.93 5.55

Figure 10. The progresses of replication of the inter-rack data transfer
blocks (The number of DataNodes:8*2)

number of streams between racks is less than the number of
DataNodes in the failure rack, the replica reconstruction time
decreases along with the increase of the maximum number
of streams between racks. All the schemes exhibit the same
behavior in this area. This is because in this area, the data
transfer between racks dominates the execution time, since
there are not enough streams between nodes.

When the maximum number of streams between racks
is equal to the number of DataNodes in the failure rack,
i.e., each DataNode in the failure rack is receiving one
block from the normal rack, the execution time of replica
reconstruction is minimized. When the maximum number
of streams is larger than the number of DataNodes, the
execution time increases slightly as the maximum number
of streams increases.

Note that the network bandwidth between racks is
1.25GB/sec, and hence nineteen streams can theoretically
saturate the network between racks. However, Figure 13
shows that the optimum stream number is larger than
nineteen. This means that the bottleneck here lies with the
DataNodes in the failure rack rather than the data transfer
between racks.

When the maximum number of streams between racks
is larger, the execution time difference betweenNon-
prioritized w/ inter andPrioritized w/ inter remains small.
This is because it is rare that the actual number of streams
between racks exceeds the number of DataNodes in the
failure rack, sinceNon-prioritized w/ inter replicates each
block in arbitrary order.

Table IV shows the reduction ratio of the execution



Figure 11. The execution time of replica reconstruction w/ inter-rack
stream control (The number of DataNodes:8*2)

Figure 12. The execution time of replica reconstruction w/ inter-rack
stream control (The number of DataNodes:16*2)

time compared toDefault when each scheme exhibits the
minimum execution time. While the reduction ratio without
inter-rack stream control show a 10% reduction at most,
the ratio with control show 16 % at most. We can conclude
that proper inter-rack stream control is effective to minimize
replication time.

V. D ISCUSSION

In this study, we have been discussing the assumption
that HDFS clusters consist of two racks. In practice, HDFS
may be utilized by clusters composed of three or more racks.
When the remaining replicas of the missing blocks are in the
same rack as shown in Figure 2, the block is replicated to
a different rack according to the replica placement policy.
When the number of racks is two, the destination rack is
uniquely determined. On the other hand, when the number
of racks is three or more, all racks, excluding the rack which
includes the source DataNode, can be the destination rack.
Therefore, we consider that inter-rack replication processes
can be distributed over multiple racks and the bottleneck of
the inter-rack network is reduced.

In addition, we have focused on balancing the load of
each DataNode and tackled the challenge of finding effec-
tive replica reconstruction schemes. However, in an actual
environment, the replica reconstruction process is performed
in the background, so it is necessary to avoid the situa-
tion where this process occupies too much of the network
bandwidth and reduces the performance of the foreground
processes. Therefore, as future work, we are going to attempt
to perform the replica reconstruction effectively using the

Figure 13. The execution time of replica reconstruction w/ inter-rack
stream control (The number of DataNodes:32*2)

Table IV
THE REDUCTION RATE OF THE EXECUTION TIME COMPARED TO THE

DEFAULT SCHEME

The number of DataNodes 8*2 16*2 32*2
Prioritized w/ intra 13.30% 10.29% 7.88%
Prioritized w/ intra and inter 16.64% 10.77% 13.01%
Non-prioritized w/ inter 14.89% 14.61% 11.29%

proposed schemes depending on the actual situation faced,
while minimizing the influence on the foreground processes.

VI. RELATED WORK

A lot of replication strategies for data management have
been proposed. In general, data are replicated and their
replicas are stored in different data nodes for reliability
and availability. And it is important to decide a suitable
replication factor and replica placement.

Rahman, et al. [6], Wang, et al. [7], and Sato, et al.
[8] proposed replication strategies based on file clustering
for Grid file systems. In the clustering strategy described
in [8], files are grouped according to each data processing
task, based on the notion that the clustered files will be
simultaneously used by another similar data processing task.
Then replication times for each file are minimized under
given storage capacity limitations. From the experiments,
they showed the proposed strategy was more efficient than
a strategy that did not group related files.

Sashi, et al. [9] proposed a replication strategy for a
region-based framework based on the popularity of files
over a geographically distributed Grid environment. By
calculating the access frequency of each file, they determine
in which region the replicas have to be placed and how many
replicas have to be placed, based on network bandwidth
and response time between regions. When a file is created,
an access frequency number is calculated for each region
and replicas are placed in the regions with a large access
frequency number in a descending order. Furthermore, a site
within the region the file has to be placed in is determined by
considering the number of requests and the response time.
Therefore, their strategy increases the data availability and
also reduces the number of unnecessary replications.

Tjioe, et al. [10] proposed a replication strategy based on
a dynamic file assignment according to access load. First,



they assign files, which are sorted by file size, to disks in
a round-robin fashion so as to distribute the access load of
all files evenly across all disks. Then, creation and deletion
of replicas occurs according to the access load of all files
and each disk. From the experiments, load balancing can
be achieved in an environment where user access patterns
change significantly.

Wenfeng, et al. [11] proposed a replication strategy based
on the response time for each request. This strategy deter-
mines replica allocation and the number of replicas for each
data block in order to satisfy the requirement due to the
response time of acquiring each replica from every node, and
to minimize the replica degree and the number of replicas
for each data block, at the same time. From the experiments,
the proposed strategy was able to meet with every node’s
response time requirements for a single request and also
reduced the value for replica degree. Moreover, it reduced
the maximum total request response time and improved the
overall system performance.

As described above, most of replication strategies consider
an access time, a storage capacity, and a replication time.
However, the overhead of a replication process on each data
node is not considered as often.

On the other hand, Suzuki, et al. [12] proposed algorithms
to perform wide-area simultaneous file replication between
PC clusters effectively. They mentioned that it was important
to prevent the network performance from degrading and to
prevent disk I/O performance from being deteriorated due
to the concentration of accesses in order to replicate the file
data between PC clusters effectively. They formulated the
file replication between PC clusters as a selection problem
of the file transferred and a scheduling problem of transfer
order by using graph theory. They proposed two algorithms
to solve these problems: one is based on a linear program-
ming approach and the other is based on a greedy approach.
In addition, in the case where the process is concentrated
on a certain node, they proposed a dynamic replica creation
algorithm whereby another node in the source cluster to
which the node belongs, sends replica files instead of the
busy node. From their experiments, they showed that the
proposed algorithm is effective in simultaneous multiple file
replication between PC clusters. Although they take into
account inter-cluster replica creation based on the load of
each node, it is different from our replication schemes, which
enable effective data replication in both intra-rack and inter-
rack data transfer environments.

VII. C ONCLUSION

We proposed effective replica reconstruction schemes for
HDFS clusters configured using two racks and evaluated the
proposed schemes by simulation. In replica reconstruction
for multi-rack environments, we have to consider the loads
of networks and DataNodes, and fault tolerance. Therefore,
we extended our single-rack replica reconstruction schemes

based on one-directional ring data transfer, and attempted to
control streams of inter-rack data transfer and give a higher
priority for blocks required for inter-rack data transfer. From
the experiments, we showed that the proposed schemes
are effective for the reduction of execution times and im-
provement of fault tolerance. We also confirmed that the
performance shows further improvement due to the reduction
of the load on the destination node by setting the number of
streams between racks to the number of nodes which belong
to the rack, including the destination node.

REFERENCES

[1] Tom White., ”Hadoop: The definitive guide,” O’Reilly JAPAN,
2009.

[2] Dhruba Borthakur. ”HDFS Architecture,” The Apache Soft-
ware Foundation, 2008.

[3] Asami Higai, Atsuko Takefusa, Hidemoto Nakada and
Masato Oguchi. ”A Study of Effective Replica Reconstruc-
tion Schemes at Node Deletion for HDFS,” Proc. the 14th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid2014), pp.512–521, 2014.

[4] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung. ”The
Google File System,” Proc. 19th Symposium on Operating
Systems Principles (SOSP’03), pp. 29–43, 2003.

[5] SimGrid. http://simgrid.gforge.inria.fr/

[6] Rashedur M.Rahman, Ken Barker and Reda Alhajj. ”Study
of Different Replica Placement and Maintenance Strategies in
Data Grid,”, Proc. the Seventh IEEE International Symposium
on Cluster Computing and the Grid, pp.171–178, 2007.

[7] Y. Wang and D. Kaeli. ”Load balancing using grid-based peer-
to-peer parallel I/O,” Proc. IEEE International Conference on
Cluster Computing, pp. 1–10, 2005.

[8] Hitoshi Sato, Satoshi Matsuoka and Toshio Endo, ”File Clus-
tering Based Replication Algorithm in a Grid Environment,”
Proc. the 9th IEEE International Symposium on Computing
and the Grid (CCGrid2009), pp. 204–211, 2009.

[9] K. Sashi and Antony Selvadoss Thanamani. ”A New Replica
Creation and Placement Algorithm for Data Grid Environ-
ment,” Proc. International Conference on Data Storage and
Data Engineering, pp. 265–269, 2010.

[10] J. Tjioe, R. Widjaja, A. Lee and T.Xie. ”DORA: A Dynamic
File Assignment Strategy with Replication,” Proc. International
Conference on Parallel Processing (ICPP’09), pp. 148–155,
2009.

[11] W.F. Wang and W.H. Wei, ”A Dynamic Replica Placement
Mechanism Based-on Response Time Measure,” Proc. IEEE
International Conf. on Communications and Mobile Comput-
ing, pp. 169–173, 2010.

[12] Katsunori Suzuki and Osamu Tatebe, ”Replication Scheduling
for a Set of Files between PC Clusters,” IPSJ Transactions
on Advanced Computing Systems, Vol.3, No.3, pp. 113–125,
2010.


