
Implementation of Data Affinity-based Distributed Parallel
Processing on a Distributed Key Value Store

Naoko Hishinuma
Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku
Tokyo 112-8610, JAPAN

naoko-
h@ogl.is.ocha.ac.jp

Atsuko Takefusa
and Hidemoto Nakada

National Institute of Advanced
Industrial Science and

Technology(AIST)
1–1–1, Umezono, Tsukuba
Ibaraki 305–8568, JAPAN

{atusko.takefusa,
hide-nakada}@aist.go.jp

Masato Oguchi
Ochanomizu University

2-1-1, Otsuka, Bunkyo-ku
Tokyo 112-8610, JAPAN

oguchi@computer.org

ABSTRACT
The spread of cloud computing has increased the necessity
of accumulating large amounts of data and performing high-
speed data processing. Because strict consistency is not nec-
essarily required for such large amount of data that cloud
computing stores, a distributed Key Value Stores (KVS) is
considered suitable for their data storage, based on an even-
tual consistency paradigm. In order to provide services such
as SNS, mining and statistical processing of these data is
indispensable. However because general distributed KVS
systems are not designed for processing, these data must be
transferred to distributed file systems such as HDFS, which
enables data processing. The transfer cost issue has occurred
in this case. To find a solution for this issue, we propose a
method that performs high-speed data processing directly
on a distributed KVS. In this paper, we extend the Apache
Cassandra database, a distributed KVS that handles large
amounts of data, to enable data affinity-based parallel pro-
cessing. The parallel data processing mechanism runs the
local processing on the stored values at each data node that
stores the values, and it then returns only the results of the
processing as an answer to a request. From the evaluation
experiments, the proposed method is shown to be faster than
the typically used Cassandra approach. In addition, even if
the writing process is performed in the background while
processing the data, the processing efficiency is appropriate
for specific loads. The experimental results show that the
data processing can be performed during the process of writ-
ing at approximately 10 Mbyte/sec if there are eight data
nodes in the experiment environment.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems—Dis-
tributed databases; D.1.3 [Software]: PROGRAMMING

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMCOM(ICUIMC) ’14 January 9-11, 2014, Siem Reap, Cambodia.
Copyright 2014 ACM 978-1-4503-2644-5 ...$15.00.

TECHNIQUES—Concurrent Programming, Distributed pro-
gramming

General Terms
Measurement

Keywords
Distibuted KVS, Parallel and Distributed Processing, Data
Affinity

1. INTRODUCTION
With the popularity of cloud technology, applications ser-
vices such as social networks and video sharing systems,
which are available to many users and share a large amount
of information, have been developed. Along with this ad-
vance, information that individuals produce will be stored
on data center servers connected by the network in large
amounts, and the amount of data on such servers is rapidly
increasing. Because strict consistency is not necessarily re-
quired for such large amount of data that cloud computing
stores, a distributed KVS, such as Apache Cassandra [1] [2]
and Apache HBase [3], which is considered suitable for their
data storage, based on an eventual consistency paradigm.
To provide services such as SNS, techniques such as the min-
ing and statistical processing of data are indispensable for
taking advantage of the data cloud computing storage and
extracting the information required by a user. However, be-
cause the distributed KVS that is used for data retention
is not what has been designed for the processing, parallel
processing as described above can perform high-speed pro-
cessing by employing a parallel processing technique such
as MapReduce [4]. Apache Hadoop [5] is generally used for
these processes at present.

However, the use of Hadoop would increase the cost sub-
stantially, especially when the system transfers data from
the distributed KVS to a distributed file system such as the
Hadoop Distributed File System, which would perform the
processing. As is conventional, it is best to not transfer the
values to that point for the processing; it is necessary to
allocate a process where the values are stored when large
amounts of data are processed [7]. For this problem, the
coprocessor [8] function, mounted on HBase Hadoop data

storage, let a simple process, such as counting and aggrega-
tion, execute on the server that holds the data. However,
because Hadoop MapReduce has a batch processing system
orientation, there is also a problem in that the system is not
suitable for storing the data in real time.

Therefore, this study proposes and implements a method
for high-speed data processing directly on a distributed KVS,
which enables to prevent the data transfer costs. We have
implemented the proposed method by using the Apache Cas-
sandra database that can accumulate large-capacity data at
a high speed [9]. Each process is executed on a Cassan-
dra data node, which contains the requested large amounts
of data, on the basis of the data affinity. In this paper,
we extend the Apache Cassandra database, a distributed
KVS that handles large amounts of data, to enable data
affinity-based parallel processing. The parallel data process-
ing mechanism runs the local processing on the stored values
at each data node that stores the values, and it then returns
only the results of the processing as an answer to a request.
From the evaluation experiments, the proposed method is
shown to be faster than the typically used Cassandra ap-
proach. In addition, even if the writing process is performed
in the background while processing the data, the processing
efficiency is appropriate for specific loads. Additionally, this
paper also shows that this implementation is effective, even
if maintaining a high consistency is required. In addition,
even if the writing process is performed in the background
while processing the data, the processing efficiency is good
for the specific loads. The experimental results show that
the data processing can be performed during the process
of writing at approximately 10 Mbyte/sec if there are eight
data nodes in the experiment environment.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related research studies. Section 3 intro-
duces an overview of Apache Cassandra. Section 4 describes
our proposed method and the parallel data processing mech-
anism that is implemented. Section 5 shows the experimen-
tal results of the execution using our implementation, and
Section 6 presents our concluding remarks.

2. RELATED WORK
Cassandra was used in this study and is a storage that has
an emphasis on writing performance. Previous studies [10]
have examined the use of Cassandra. Focusing on the per-
formance cloud storage of the existing reading and writing
performance, this study proposes and implements a method
called MyCassandra cluster that has high reading and writ-
ing performance in the same cloud storage. This mechanism
uses a selectable storage engine and is can distribute write
and read requests appropriately.

ParaLite is [11] the like research associated with this study.
ParaLite is a parallel Relational DataBase Management Sys-
tem (RDBMS) that is based on SQLite. It supports the
parallel execution of SQL queries by using a function called
Collective Query. In addition, ParaLite provides a function
called UDX (User-Defined eXecutables), to make it possible
to embed shell commands into the SQL query that was is-
sued by the client. This feature is similar to that used in
our proposed method: the feature has a function similar to
User-Defined Function (UDF) and define processing which
a user wants to execute as a plug-in. It can acquire the
processing result only as an answer to the request.UDF is a
function that allows users to define their own function as a

plug-in, which can be applied to data in SQL.
Current distributed storage not be able to meet different

requirements of two or more applications at the same time.
Thus, Comet [12] has been studied as a distributed storage
system to meet the needs of various applications. Multiple
application can execute functions that were to application
requirements such as adaptation to context, access log and
tracking by extending the standard distributed KVS. Similar
to our implementation, the user can execute any processing
by using UDF over one distributed KVS.

Hive [13] and SQL/MapReduce [14] is a research to paral-
lelize arbitrary processing by use of UDF and this research is
related to our research. Hive supports a declarative language
called HiveQL, which is SQL-Like. The HiveQL query is
compiled into a MapReduce job and is executed on Hadoop.
Thus, the user can operate data on Hadoop in such a way
as to manipulate the data on RDBMS by use of SQL. In
addition, HiveQL also support UDF function, therefore the
user can parallelize any processing. SQL/MapReduce has
enabled parallel data processing by extending the UDF and
then useing MapReduce. These implementations are similar
to our research in the point that users are able to parallelizes
arbitrary processings by using a function to transmit jar files
as UDF. These researches are also similar to our research in
using CQL as a future extended direction. However, while
SQL/MapReduce and Hive use MapReduce to perform par-
allelization, our implementation parallelizes by transferring
processing to the data node.

Storm [15] is a real time data streaming framework that
functions in memory. Storm constructs a processing graph,
that feeds data from an input source through processing
nodes. Storm aims event driven, high resolution process-
ing, such as preprocessing of sensor data and word count of
tweets. Our system focuses on medium to large resolution
processing using stored data.

DataCutter [16] is a similar project, which provides a mid-
dleware infrastructure that enables processing of scientific
datasets stored in archival storage systems across a wide-
area network. DataCutter is integrated with Storage Re-
source Broker (SRB) [17], while we use Apache Cassandra
as a storage system.

3. APACHE CASSANDRA
Apache Cassandra is a distributed database management
system developed by Facebook Inc. and is an open-source
Apache project [2]. Some of the main features of Cassandra
include the following: the height of the fault tolerance, that
there is no single point of failure in a non-centralized system,
and that users can freely set the degree of consistency. It is
specific features of Cassandra for a client to set the query
level of consistency that it needs freely, which is uncom-
mon not only in the RDBMS but also in other NoSQL. The
consistency level of writing and reading can be set using
the ConsistencyLevel option of Cassandra. Table 1 shows
some of the settings and a consistent level. The consistency
level of ONE is considered to be a generally weak level; to
be consistent with a strong QUORUM, the setting of ALL
is used. In Cassandra, client can specify the level of con-
sistency in both writing and reading, and it is possible to
control the strength of the consistency. We can determine
the strength of the consistency using the expression R + W
> N. R, W, and N stand for the number of read-replica,
write-replica, and the replication number, respectively. For

example, if you specify two consistent levels of reading and
writing, both the reading and writing replica numbers are
set to two. If you do not satisfy this expression, it is a state
of weak consistency (also called Eventual Consistency). In
Eventual Consistency, in this case,e.g., when there is a read
immediately after the a write, there is a possibility that the
result of the read is that of the write is not reflected. The
next level is referred to as Strong Consistency. Strong Con-
sistency is when this formula is satisfied and when reading
the result of the write-ahead is guaranteed.

It is good to store large amounts of data at a high speed
because Cassandra employs Eventual Consistency. Using a
YCSB to evaluate the basic performance, as in the exist-
ing studies [18], the RunTime of the workload for writing
only is less than half of the RunTime of the workload for
reading only, which increases by about three times in the
throughput.

Table 1. Consistency level that can be set in the
Cassandra.
Consystency Description
level
ONE Write and Read process runs on a single target node.

It is considered that the process has completed
when there is a reply from one node.

QUORUM Write and Read process runs on the target node.
It is considered that the process has completed
when there is a reply from the replica of
the majority((number of replication/2)+1).

ALL Write and Read process runs on multiple target node.
It is considered that the process has completed
when there is a reply from all of the replicas.

4. DESIGN OF THE PROPOSED METHOD

4.1 Overview of the proposed method
When we run data processing, e.g., mining or statistical
processing, for the large amounts of data that are accumu-
lated on the high-speed Cassandra, we obtain the values to
be processed from Cassandra. The processing is then per-
formed using MapReduce or a distributed file system such as
HDFS. However, the read performance of Cassandra is not
necessarily high. In addition, when Cassandra accumulates
too much data, the Communication process for acquiring
the value becomes too slow, and a large transmission delay
could occur when transferring to a distributed file system
from Cassandra.

Therefore, this study proposes a method for high-speed
data processing directly on Cassandra, which accumulates
the data to prevent the the transfer costs that would other-
wise occur when the data are stored in real time.

Description of the performance of the proposed method.
In the proposed method, it is possible to define the process-
ing that the user wants to run as a plug-in using the UDF.
This processing is performed locally on each data node that
stores the processed data. Only the processing result is re-
turned to the client, which reduces the transport costs, and
high-speed data processing is achieved. If the value of the
processing target is specified as multiple, parallel processing
is allowed for different values, and a higher speed can be
expected.

Figure 1 shows an overview of the proposed method.

(1) As in UDF, define the processing of any process X.

Client

value A’
real data

value A
real data

value B’
real data

value B
real data

Proxy

value A’

replica

value A
replica

process

X

(1)

(3)

(4)

process

X

process

X (3)

Define the

process X

(2) (3)

Figure 1. Overview of the proposed method.

(2) Send a request to each data node that contains the
data from the client.

(3) Execute the process X that has been transferred, using
the values A and B, in parallel. This implementation
performs the same processing for each replica of values,
but it omits the processing replica value B in Figure
1.

(4) Returns an answer to the requested value A’ and B’
which are the processing result.

4.2 Overview of the parallel data processing
mechanism

Here, we describe the parallel data processing mechanism
that is used to achieve the technique described in the pre-
vious section. The extended standard read commands of
Cassandra (e.g., get, the multiget slice) do the following:
after a request is sent for read processing, Cassandra runs
the local processing for the stored value on each data node
that stores that value. Then, it returns only the results of
the processing as an answer to the request. This approach
can perform any processing that the user specifies should
be defined in Java UDF. In this implementation, jar files of
processes that have been defined by a read request is trans-
ferred to the data node. Table 2 shows the contents of the
main standard read command of Cassandra.

Table 2. List of commands.
Command Function
get get a specified value.
multiget slice get multiple rows corresponding

to the requested row keys.
get range slices get multiple rows corresponding to

the requested range of row keys.

An overview of the implementation is described with ref-
erence to Figure 1.

(1) Create a jar file of process X to be run.

(2) Transfer the jar file of the process X to be run along
with the read request. If the jar file is not to be trans-
ferred, then a normal read is executed.

(3) Execute process X in parallel, which has been trans-
ferred for values A and B. The implementation per-
forms the same processing for each replica of values,
but it omits processing the replica of the value B in
Figure 1.

(4) Return A’ and B’ that are the processing results as an
answer to the request value.

The UDF is run even for a replica, and synchronization is
performed in the background if the consistency is not main-
tained, checking by the hash value (Digest) answers to the
requests.

/* public abstract class UDF {
public abstract ByteBuffer
processEach(ByteBuffer val)

Exception;
} */

public class UDFImpl extends UDF {
@Override
public ByteBuffer

processEach(ByteBuffer value)
throws Exception {
// write User defined

function body here.
return result;

}
}

Figure 2. A UDF example.

String udf =
"{\"classname\": \"<class name>\", ";
udf += "\"jar\":\"/<path>/my_udf.jar\", ";
udf += "\"option1\":\"<option1 value>\" }";

Map
<ByteBuffer, List<ColumnOrSuperColumn>>
results =
client.multiget_slice_udf(

<row keys>, <column parent>,
<slice predicate>,

<ConsistencyLevel>, udf);

Figure 3. An example of a requester program.

The application programming interface in Java for the
parallel data processing mechanism is as follows. Figure 2
shows an example of defining a UDF. The parallel data pro-
cessing mechanism extends the getRow() methods of org.
apache.cassandra.db.SliceByNamesReadCommand and org.

apache.cassandra.db.SliceFromReadCommand, which were
extended to any processing to allow for each value. The
getRow() method is a method that can be called to obtain
a value on the side of the data node in Cassandra. The
commands used to invoke it are listed in Table2. The user
creates a UDFImpl class that extends an abstract class, a UDF,
to implement the processing of any class processEach () in
a method. In addition, the pre-created jar file that contains
the UDFImpl.class is kept.

Figure 3 shows an example of a program for executing the
UDF. For the string udf, the jar file name and the Class
name are specified in the JSON format. Furthermore, it

is also possible to use the JSON format to specify that any
options required by UDF should be performed, as defined by
the user. The jar file that is specified by a command request
is sent to the data node of Cassandra. It is possible to
perform the processing specified by the data node by passing
the jar file to the multiget_slice_udf function, which is an
extension of the multiget_slice for this UDF.

5. PERFORMANCE EVALUATION OF THE
PARALLEL DATA PROCESSING MECH-
ANISM

We evaluate the performance of the parallel data processing
mechanism by measuring the following: basic performance,
performance when the consistency is changed and perfor-
mance when write processing is performed in the background
during data processing.

5.1 Experiment environment
To cluster up to eight nodes, we installed Cassandra with an
extension. In this development, we used Cassandra version
1.2.0. Table 3 shows the performance of the node that was
used for the measurements.

Table 3. Cassandra cluster node specification.
OS Linux 2.6.32-5-amd64

Debian GNU/Linux 6.0.4
CPU Intel(R) Xeon(R) CPU @ 2.66GHz x4

Intel(R) Xeon(R) CPU @ 3.10GHz x4
Memory 8GByte
HDD 500GB 7200RPM SAS Disk x 2
RAID Controller SAS-6IR (RAID 0)
Network 1Gbps

5.2 Basic performance
To evaluate the basic performance of the present implemen-
tation, we investigated the performance of the data process-
ing, in the case of the simplest form using Cassandra as mere
storage.

5.2.1 Measurement overview: building a cluster us-
ing Cassandra

Next, We compare running the command word count (wc)
after obtaining the values of the multiple-use standard com-
mands for Cassandra, i.e., the multiget slice (hereinafter
called Client-side processing), and when using the parallel
data processing mechanism that is implemented (hereinafter
called Server-side processing). We investigate the change in
the execution time due to the change in the number of values
and the number of data nodes to be used in processing. In
this measurement, the result of running wc on a 20 MByte
text is a value of 10 times wc, if the value is 10. Figures 4
and 5 shows the flow of processing for each when the value
is two.

Flow of the client-side processing:

(1) Sending read request from the client.

(2) The data node that is responsible returns value A and
B to the proxy as an answer to the request; the proxy
returns the values to the client.

(3) The values A and B that are read out are written to
file to perform a series wc on the file. Serial execu-
tion is performed that indicates the value obtained is
processed by wc sequentially on one node.

Client

value A
real data

value B
real data

Proxy

value A
replica

WC

(1)

(2)

(3)Value A and B

obtained

Figure 4. Flow of the client-side processing.

Flow of the server-side processing:

(1) The jar file is transmitted with read request from the
client.

(2) The wc is executed in parallel for values A and B on
the data nodes to respond to the request, and the new
values A’ and B’ are produced as the processing result.

(3) The data node returns the values A’ and B’ to the
proxy, and the proxy returns the values to the client.

Client

value A’
real data

value A
real data

value B’
real data

value B
real data

Proxy

value A’
replica

value A
replica

WC

(1)

(2)

(3)

WC

WC (2)

Figure 5. Flow of the server-side processing.

Both client- and server-side processing incorporate the
processing of (1) to (3) as a single process. The number
of data nodes was varied among three, five, and eight. We
then measured the change in the execution time when were
used the parameters shown in Table 4.

5.2.2 Client-side processing: comparison of the ex-
ecution time of server-side processing

If you specify value numbers of 10 and 30 at consistency level
ONE, then Figures 6 and 7 show the execution time for the

Table 4. Cassandra cluster node specification
Number of replications 3
Number of data nodes 3, 5, 8
Number of values 10, 30
Consistency level ONE, ALL

client-side processing, the server-side processing and the wc

time (the time spent only in wc in client-side processing).
The vertical axis represents the execution time (sec), and
the horizontal axis represents the number of data nodes.

As observed in Figures 6 and 7, regardless of the number
of values, the execution time of the server-side processing is
reduced to less than one-fifth of the execution time of the
client-side processing. This is because the server-side pro-
cessing returns processing results of the wc as a response
to the request and because the communication data volume
could be reduced, by execution in parallel by dispersing the
process, i.e., the series wc. This result occurs because it is
possible to reduce the amount of time required for wc pro-
cessing compared with the client-side process running time.
Regarding the client-side processing in Figures 6 and 7, no
changes are observed in the execution time because of the
volume change. This is because the work to write the val-
ues to a file (that was obtained from Cassandra) temporary
becomes overhead.

0

5

10

15

20

25

30

35

40

45

50

3 5 8

R
u
n
T

im
e[

se
c
]

Number of data node

wc

Client-side

processing

Server-side

processing

Figure 6. Execution time of word count (wc) pro-
cesses. The number of values equals 10.

5.3 Change in the execution time associated
with consistency

Cassandra contains a feature that can freely change the con-
sistency according to the user’s needs. Therefore, we must
investigate the performance when the consistency of using
this implementation is changed.

The execution time of each process is changed when the
same experiment is performed in the previous section using
the following values, as depicted in Figure 8: there are three
or eight data nodes, the consistency level is ALL and the
value is increased from 5 to 30. The vertical axis represents
the execution time (sec), and the horizontal axis represents
the number of values. In this figure, the result of client-side
processing with three data nodes is omitted because it is al-
most the same with that with eight data nodes. When the
given consistency level is ALL, the performance becomes low

0

5

10

15

20

25

30

35

40

45

50

3 5 8

R
u
n
T

im
e[

se
c
]

Number of data node

wc

Client-side

processing

Server-side

processing

Figure 7. Execution time of word count (wc) pro-
cesses. The number of values equals 30.

overall because the number of responses required for com-
plete processing is increased. If a consistency level of ALL
is specified, then the server-side processing is faster than
the client-side processing. In addition, as a large number
of nodes has become faster in the server-side processing, the
same results are obtained as when a consistency level of ONE
is specified. Therefore, in the proposed method, it is possi-
ble to process at a high speed even in a situation in which a
high level of consistency is maintained

0

5

10

15

20

25

30

35

40

45

50

5 10 20 30

R
u

n
T

im
e[

se
c]

Number of value

Client-side processing_8 Server-side processing_3 Server-side processing_8

Figure 8. Execution time for the consistency level
ALL.

5.4 Influence of the writing process on the ex-
ecution time

This implementation is affected when the data processing
is run during a write operation, when performing data pro-
cessing and the writing process coexist on one system. In
this section, to investigate the impact of the parallel data
processing mechanism, we evaluate to what extent the per-
formance is impacted when the write process is running in
the background while the data is processed.

5.4.1 Measurement overview
In this measurement, the result of running the wc on a 20
MByte text is a value of 10 times wc, if the value is 10. This
step is to investigate changes in the execution time when
the throughput of the writing process is varied for concur-
rent data processing. The procedure of the experiment is as
follows.

Processing flow:

(1) Send from the client jar files wc and the reading re-
quest. At the same time, write processing is continu-
ously performed.

(2) The wc is executed in parallel for values A and B to suit
the request, using the data nodes that are responsible
for the new values A’ and B’ as the processing result.

(3) The data nodes returns values A’ and B’ to the proxy,
and the proxy sends the values back to the client.

To the processing of (1) to (3), we determined the change
in the execution time using the following conditions: eight
and three data nodes, a consistency level of ALL for the
writing process, a consistency level of ONE for the reading
process and the parameters shown in Table 5.

Table 5. Measurement parameters.
Number of replications 3
Number of data nodes 3, 8
Number of values 50, 100, 200
Writing throughput (byte/sec) 0, 1K, 10K, 100K, 1M, 10M

5.4.2 Influence of the writing process on the execu-
tion time

We investigated the effect of the writing process to obtain
the data processing execution time. Figures 9 and 10 indi-
cate a change in the execution time for each of the cases in
which the write throughput is changed 0 - 10 Mbyte/sec from
eight and three data nodes. The vertical axis represents the
execution time (sec), and the horizontal axis represents the
write throughput (byte/sec). Each execution time is the av-
erage execution time when repeated 10 times via the process
described in section 5.4.1.

Figures 9 and 10 indicate that when the tendency of the
execution time to increase was observed, the write load af-
fected the data processing performance. This finding was ob-
tained by comparing the execution time of granting a write
load of 10 Mbyte/sec to when there was no write load at
all. In addition, the degradation of the data processing per-
formance was found to be large given a write load of 100
Kbyte/sec if the data node number were small (three). On
the contrary, even when the write load was 10 Mbyte/sec, if
the data processing used a large number of nodes (eight), it
was able to efficiently process even with the write load.

Since Disk-IO is considered to be the cause of increase in
execution time, we investigated length of the queue of IO
request. Figures 11 and 12 indicate a change in the length
of queue of IO request for each of the cases in which 0 and
10 Mbyte/sec the write throughput on eight and three data
nodes. Number of value is set to 200. The vertical axis rep-
resents the length of queue of IO request, and the horizontal
axis represents execution time (sec).

Figures 11 and 12 indicate that length of queue of IO re-
quest is seventy-eight at a maximum if the data node number
were small (three), 10 Mbyte/sec the write throughput. In
addition, length of queue of IO request tends to be long in
this case. The length of queue of IO request shorter than
that when the data node number was three if the data pro-
cessing used a large number of nodes (eight). Therefore it

0

5

10

15

20

25

30

35

40

45

50

0 1k 10k 100k 1M 10M

R
u

n
T

im
e[

se
c
]

Write throughput[byte/sec]

value 50

value 100

value 200

number of values

Figure 9. Execution time of word count (wc) pro-
cesses under background write processes. The num-
ber of data nodes equals 3.

0

5

10

15

20

25

30

35

40

45

50

0 1k 10k 100k 1M 10M

R
u

n
T

im
e[

se
c]

Write throughput[byte/sec]

value 50

value 100

value 200

number of values

Figure 10. Execution time of word count processes
(wc) under background write processes. The num-
ber of data nodes equals 8.

was confirmed that disk IO was the cause of increase in ex-
ecution time.

6. CONCLUSIONS AND FUTURE WORKS
In this research, to reduce the costs that are incurred and to
speed up the processing of large volumes of data, we propose
a method that performs high-speed data processing directly
on a distributed KVS. In this paper, we extend the Apache
Cassandra database, which is a distributed KVS for handling
large amounts of data, to enable data affinity-based parallel
processing. The parallel data processing mechanism runs
the local processing on the stored value for each data node
that stores the value. It then returns only the results of the
processing as an answer to the request.

In the evaluation experiment, compared the case of a par-
allel data processing mechanism with that using Cassandra
in its simplest form as a mere storage, we were able to im-
prove the execution speed and proved the effectiveness of
the proposed method. This result is caused by the follow-
ing. Because the server-side processing returns a response
to the request by processing results of the wc and because
the communication data volume could be reduced, they were
executed in parallel by dispersing the process, i.e., the se-

av
gq

u-
siz

e

0

10

20

30

40

50

60

70

80

0 6 12182430364248 3 9 152127333945 0 6 12182430364248

0

10

20

30

40

50

60

70

80

0 6 12 18 24 30 36 0 6 12 18 24 30 36 0 6 12 18 24 30 36

node1 node2 node3

Runtime[sec]

no write load

write load of 10 Mbyte /sec

Figure 11. Length of queue of IO request. The num-
ber of data nodes equals 3.

av
gq

u-
siz

e
0

10

20

30

40

50

60

70

80

0 6 12 3 9 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9

node1 node2 node3 node4

node5 node6 node7 node8

0

10

20

30

40

50

60

70

80

0 6 1218 3 9 15 0 6 1218 3 9 15 0 6 1218 3 9 15 0 6 1218 3 9 15

Runtime[sec]

no write load

write load of 10 Mbyte /sec

Figure 12. Length of queue of IO request. The num-
ber of data nodes equals 8.

ries wc. This circumstance arises because the amount of
time required to perform wc processing can be reduced com-
pared with running the client-side process. In addition, it
was found that the degradation of the data processing per-
formance is large with a write load of 100 kbyte/sec if the
number of data nodes is small (three). Even when the speed
is 10 Mbyte/sec, if the data are processed by a large number
of nodes (eight), it could be efficiently processed even with
the write loads.

In our future work, we intend to conduct a performance
evaluation with similar techniques to research the Hadoop
cooperation function of Cassandra and compare it with the
implementation using MapReduce and HBase. This step
is intended to clarify that the performance of the proposed
method is important. In addition, the situation closer to an
actual environment should be evaluated, so we could con-
sider the circumstance in which there are writes from many
clients. The challenge surfaces that to have executable ag-
gregation processing such as an average or sum, we must
add the phase of the aggregate operation treatment. The
method for the aggregate operation uses a language similar
to SQL that is called Cassandra Query Language (CQL),
which can be considered when adding such a function in the
present implementation.

7. REFERENCES
[1] A.Lakshman and P.Malik. ”Cassandra - A

Decentralized Structured Storage System,” The 3rd
ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware, October 2009.

[2] Eben Hewitt.,Cassandra: The definitive guide, trans.
Shinpei Ohtani and Takashi kobayashi. O’Reilly
JAPAN, 2011.

[3] The Apache software Foundation. Apache HBase.
http://hbase.apache.org/hbase/.

[4] J.Dean and S.Ghemawat. ”MapReduce: Simplified
Data Processing on Large Clusters” In Proceedings of
the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6
(OSDI’04), Vol. 6. USENIX Association, Berkeley,
CA, USA, 10-10.

[5] Tom White.,Hadoop: The definitive guide, trans.
Ryuji Tamagawa. O’Reilly JAPAN, 2010.

[6] Dhruba Borthakur. ”HDFS Architecture,” 2008 The
Apache Software Foundation.

[7] J.Gray, D.T.Liu, Maria Nieto-santisteban, A.S.Szalay,
D.DeWitt, and G.Heber. ”Scientific data management
in the coming decade”Microsoft Technical Report,
MSR-TR-2005-10.

[8] The Apache software Foundation. Apache
HBase/coprocessor.
https://blogs.apache.org/hbase/entry
/coprocessor introduction.

[9] B. F. Cooper, A. Silberstein, E. Tam, R.
Ramakrishnan, R. Sears. ”Benchmarking Cloud
Serving Systems with YCSB” In Proc. SOCC2010,
June 2010.

[10] S.Nakamura, K.Shudo. ”A Cloud Storage Supporting
Bath Read Heavy and Write Heavy Workloads”
Proceedings of the 5th Annual International Systems

and Storage Conference. ACM, 2012. p. 5.

[11] Ting Chen, Kenjiro Taura. ”ParaLite: Supporting
Collective Queries in Database System to Parallelize
User-Defined Executable” In Proceedings of the 12th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid12), Ottawa,
2012:474-481

[12] R.Geambasu, A.A.Levy, T.Kohno, A.Krishnamurthy
and H.M.Levy. ”Comet: An active distributed
key-value store” In Proc. OSDI. 2010, October.
p.323-336.

[13] A.Thusoo, J.S.Sarma, N.Jain, Z.Shao, P.Chakka,
S.Anthony, H.Liu, P.Wyckoff and R.Murthy. ”Hive: a
warehousing solution over a map-reduce framework” In
Proc. VLDB Endow. 2, 2 (August 2009), 1626-1629.

[14] E.Friedman, P.Pawlowski, and J.Cieslewicz.
”SQL/MapReduce: a practical approach to
self-describing, polymorphic, and parallelizable
user-defined functions” In Proc. VLDB Endow. 2, 2
(August 2009), 1402-1413.

[15] Storm: http://blog.gigaspaces.com
/gigaspaces-and-storm-part-1-storm-clouds/.

[16] Michael Beynon, Renato Ferreira, Tahsin Kurc, Alan
Sussman, Saltz. ”DataCutter: Middleware for Filtering
Very Large Scientific Datasets on Archival Storage
Systems” http://www.cs.umd.edu/projects
/hpsl/ResearchAreas/DataCutter.htm

[17] Chaitanya Baru, Reagan Moore, Arcot Rajasekar,
Michael Wan. ”The SDSC Storage Resource Broker”
Proc. CASCON’98 Conference , Nov.30-Dec.3, 1998,
Toronto, Canada.

[18] N.Hishinuma, A.Takefusa, H.Nakada, M.Oguchi. ”A
Study about the data volume and processing
performance in KVS data processing by Cassandra” In
Proc. DEIM Forum 2012, C2-5, March 2012.

