
Proposal for an Optimal Job Allocation Method
for Data-intensive Applications based on
Multiple Costs Balancing in a Hybrid Cloud Environment

Yumiko Kasae1 and Masato Oguchi1

1Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
yumiko@ogl.is.ocha.ac.jp, oguchi@computer.org

Abstract: Due to the explosive increase in the amount of information in computer systems, we need a system that can
process large amounts of data efficiently. Cloud computing system is an effective means to achieve this ca-
pacity and has spread throughout the world. In our research, we focus on hybrid cloud environments, and we
propose a method for efficiently processing large amounts of data while responding flexibly to needs related to
performance and costs. We have developed this method as middleware. For data-intensive jobs using this sys-
tem, we have created a benchmark that can determine the saturation of the system resources deterministically.
Using this benchmark, we can determine the parameters in this middleware. This middleware can provide
Pareto optimal cost load balancing based on the needs of the user. The results of the evaluation indicate the
success of the system.

Keywords: Hybrid cloud, Load balancing, Data processing, Performance, Cost Balance

1 Introduction

In recent years, large amounts of data, referred to
as big data, have become more common with the de-
velopment of information and communications, cre-
ating the need for efficient data processing. As a plat-
form for processing these data, hybrid cloud environ-
ments have become a focus of attention. In hybrid
cloud environments, users can access public clouds
and private clouds; private clouds are secure clouds
built using the secure resources of the user company,
and public clouds can provide scalable resources if the
user pays metered rates. Combining these clouds can
address shortcomings related to safety and scalability.
For data-intensive jobs, hybrid clouds are appropri-
ate. For increasing amounts of data, hybrid clouds
can provide secure and scalable processing.

However, performance and costs must be bal-
anced. When we want to process large amounts of
data more rapidly, using many resources that are pro-
vided by public clouds, in addition to those provided
by private clouds, will increase speed, but the metered
cost will also be greater. In contrast, if these jobs are
processed using private cloud resources almost exclu-
sively, users will not have to pay metered rates, but

the job execution time will be longer. Thus, we need
a system that can determine optimal job placement
based on cost limitations and necessary performance
to ensure efficient processing in hybrid cloud environ-
ments.

Therefore, in this research, we proposed a method
for providing optimal job placement in hybrid cloud
environments in terms of monetary costs and perfor-
mance. We have developed this system as middle-
ware. In addition, the middleware provides optimal
job placement for both CPU-intensive applications
and data-intensive applications. In general, unlike in
CPU-intensive applications, which can accurately de-
termine the load using the CPU usage, efficient re-
source use in data-intensive applications is difficult
to determine. In the proposed method, we created a
benchmark that can be used to change the extent of the
load of CPU processing and I/O processing, and we
measure the performance of hybrid clouds as an exe-
cution environment using this benchmark. Based on
the results obtained using this benchmark, we propose
a method of determining job execution status based on
the status of the I/O resources.

In this paper, we will describe the details of the
middleware that can be used to implement the method

proposed in this study. We have evaluated the bal-
ance of performance and costs by using this mid-
dleware with data-intensive applications. We exam-
ine the evaluation axis for performance and monetary
costs and show that this middleware can provide op-
timal job placement for efficient job processing. The
monetary cost is the sum of the power consumption
cost for private clouds and the metered costs associ-
ated with public clouds.

The remainder of this paper is organized as fol-
lows. Section 2 introduces cloud computing. Section
3 describes the proposed method of determining the
load. Section 4 describes the middleware that we sug-
gest can be used for optimal job allocation. Section 5
introduces the evaluation results for our middleware.
Section 6 comments on related research studies, and
Section 7 presents concluding remarks and sugges-
tions for future work.

2 Cloud Computing

2.1 Overview of Cloud Computing and
Classification

Cloud computing is a service through which users can
use necessary software and hardware resources from
servers through networks. If a user uses cloud com-
puting services, without having the physical computer
resources, the user can receive various services.

The types of services include SaaS (Software as a
Service), PaaS (Platform as a Service) and IaaS (In-
frastructure as a Service). Recently, because of the di-
versity of services that can be provided, these services
have been collectively called XaaS (X as a Service).

This study will consider IaaS. The types of plat-
forms for IaaS are private clouds and public clouds.
Public clouds can be used through the Internet, and
users can use cloud services　 scalable if they pay
metered rates to the cloud provider. However, in pub-
lic clouds, it is necessary to leave the data with the
cloud provider (albeit temporarily) during processing
jobs, which generates some security concerns.

Using private clouds can solve these problems. A
private cloud is a cloud that is built using resources
that users already have. The user can construct the
cloud taking security into account. However, private
clouds lack scalability relative to public clouds. Hy-
brid clouds can address the shortcoming each of the
cloud types. These clouds can be both secure and
scalable. In this research, which is focused on hy-
brid cloud environments, we proposed a method for
ensuring efficient processing.

2.2 The Trade-off Between Cost
of the Evaluation Axis for Hybrid Clouds

When we use hybrid cloud environments, there will
be a trade-off relationship between performance and
necessary costs. When we want to process a large
amount of data more rapidly, using many resources
that are provided by the public cloud, in addition to
the resources of the private cloud, and the associ-
ated metered cost will make the job more expensive.
In contrast, if these jobs are processed using private
cloud resources with little or no use of public cloud
resources, users will not have to pay metered costs,
but the job execution time will be longer. Thus, we
need a system that can determine optimal job place-
ment based on the equilibrium between necessary cost
and performance to ensure efficient processing in a
hybrid cloud environment.

My research proposes a method of providing op-
timal job placement in hybrid cloud environments
in terms of monetary costs and performance. This
method has been operationalized as middleware. This
middleware will consider job processing time and
monetary costs. Monetary cost is the sum of the
charge for power consumption in private clouds and
the metered costs associated with public clouds. The
recent environmentalism in global affairs makes it
especially important to reduce power consumption
when processing large amounts of data. It is impor-
tant that we not waste power. In addition, the mone-
tary cost of private clouds may include fixed costs as-
sociated with the system installation. However, such
amounts are difficult to define categorically. Thus, we
assume that the equipment has already been depreci-
ated, and the fixed costs were evaluated as zero. The
monetary cost does not include the fee for the power
consumption associated with the public cloud. This is
because it is difficult for the user to know the price of
the power consumption by each resource in the public
cloud. For the public cloud, the power consumption
charges are assumed to be included in the metered
costs.

2.3 Eucalyptus

In this paper, we have used the cloud-building soft-
ware Eucalyptus (D.Nurmi, 2010) to build two cloud
systems. By connecting with Dummynet to gener-
ate an artificial delay between them, we have built
an emulated hybrid cloud environment in our labo-
ratory. Eucalyptus is open source software that can
create cloud infrastructure. Eucalyptus is compatible
with the Amazon EC2 API; the Amazon EC2 (Ama-
zon Elastic Compute Cloud) is a cloud service that is

Figure 1: Architecture of Eucalyptus.

provided by the U.S. company Amazon.com. Using
a cloud built in Eucalyptus, you can port a service on
this cloud as if the service was on Amazon EC2. Fig-
ure 1 shows the architecture of Eucalyptus. Eucalyp-
tus is composed of three components. It is treated as a
public network to the upper layers of the Cloud Con-
troller (CC) from the Cluster Controller (CLC), and it
is treated as a private network to the lower layers of
the NC (Node Controller).

Cloud Controller (CLC)
Manages the information in the entire cloud.
Equipped with a compatible interface for Amazon
EC2; a web management screen provides an API
for the user.

Cluster Controller (CC)
Manages the node controller, the state of instances
(virtual machines) and the virtual network for the
instances.

Node Controller (NC)
Controls the instance. When the program needs to
run multiple instances, the virtualization software
runs on the node controller.

3 Proposed method for determining
the load

The proposed middleware in this paper processes
not only CPU-intensive applications but also data-
intensive applications. In both these jobs in a hybrid
cloud environment, to obtain high-speed and low-cost
processing after all of the resources have been used
in the private cloud, the next tasks should be pro-
cessed using in the public cloud. In addition, in the

public cloud, after the borrowed resources have all
been used, new resources will be needed. Therefore,
even when it is important to utilize resources with-
out waste, it is also important to properly determine
the load, and all of each resource should be used.
Therefore, when used for CPU processing and disk
processing, this middleware determines when the re-
source has been saturated. Based on this information,
this middleware will determine the resource load. The
methods of determining the load for each type of pro-
cessing are as follows.

3.1 Method for Determining the Load
of CPU Processing

Load balancing for CPU-intensive jobs has been in-
vestigated in many past studies. In this research, CPU
usage is the focus. This proposed middleware also de-
termines the load based on CPU usage. This method
is same as that used in other studies; if the usage
reaches 100%, the resource has been saturated, and
the middleware does the load balancing. The method
of optimally balancing CPU-intensive jobs is not a
feature of this proposal because it does not fundamen-
tally change the techniques used in other studies.

3.2 Method of Determining the Disk
Processing Load

3.2.1 Disk Performance Measurement

Unlike in CPU intensive-jobs, it is difficult to make
a definitive decision about whether the disk load
has reached the saturation point during data-intensive
jobs. For data-intensive jobs, because the system is
often waiting for I/O processing, it is difficult to de-
termine the CPU load. Thus, in the proposed method,
we use each cloud resources
/proc/diskstats file to obtain the length of the queue
for the current disk. Then, we estimate the number
of jobs that are running in these disks. Therefore, in
this method, it is also necessary to know the length of
the queue, which indicates the saturation of the disk
resources.

Therefore, we have created benchmarks that can
change the balance of I/O and CPU processing. By
using the benchmark Disk Bench, which performs
read-only processing, we measured disk performance
using the execution environment of the middleware.
In Figure 2, as an example of a job by Disk Bench,
we can see a state of transition for the CPU load and
the number of disk accesses. Disk Bench is a sim-
ple benchmark that performs Read processing for the
disks in the instance. This figure shows that Disk

Figure 2: One example of the load transition of Disk Bench.

Table 1: Instance.
OS Linux 2.6.27.21-0.1-xen /

x86 84 GNU / CentOS 5.3
CPU Intel(R) Xeon(R) CPU @ 3.60GHz 1 core
Memory 1024MByte
Disk 20GByte

Bench processing is not performed when there is little
CPU processing and will become I/O bound if many
jobs are processed at the same time.

Using Disk Bench, we have measured the perfor-
mance of the disk. We have made this performance
measurement for the instances of performance in Ta-
ble 1 for the hybrid cloud. In this measurement pro-
cess, we measured the execution time for the jobs and
the queue that is accumulated for the disk during the
processing of multiple simultaneous jobs using Disk
Bench. We then compare the processing time when
these jobs are processed sequentially and the process-
ing time using this measurement.

In general, if there are sufficient disk resources,
simultaneously processing the jobs can be more rapid
than sequentially processing them. However, when
we increase the number of jobs to be processed simul-
taneously, there is a point at which processing time
will be slow as a result. This method determines when
there are no more disk resources, and the length of the
queue that has accumulated for the disk at that time is
defined as the ”conditions in which the disk resources
have run out”.

Furthermore, in Disk Bench, there are two param-
eters. One of parameters specifies the amount of read-
ing at a particular time, and the other specifies the
number of times this reading has been repeated. In
this performance measurement process, we create a
job that we intended to access a variety of patterns us-
ing the disk; these parameters were varied. We have
measured performance changing these parameters.

Figures 3 and 4 show examples of the compari-
son results for processing times and the length of the
queue at the time of this performance measurement
experiments.

The assumed access pattern is as follows: a few
read small data blocks, many read small data blocks,

Figure 3: One Example of Comparison of processing
times(block size: 64 bytes, repetition rate: 4M times).

Figure 4: One Example of The length of the queue(block
size: 64 bytes, repetition rate: 4M times).

a few read large data blocks and many read large data
blocks.

First, in this performance measurement process,
we compare the processing time for simultaneous pro-
cessing and sequential processing. In Figures 3, the
vertical axis represents a ratio that indicates the com-
parison results for the processing time. This ratio was
obtained by dividing the sequential processing time
into the simultaneous processing time. The vertical
axis at the value of 1 is indicated by a red dashed line.
If the value is below the dashed line, then simulta-
neous processing is faster than sequential processing.
If the value is above the dashed line, then sequential
processing is faster than simultaneous processing. In
other words, the disk resource has been exhausted.
Thus, in Figure 3, we can see that in job number 4,
the disk resource was exhausted.

Figures 4 show the transitions in the length of the
queue for each number of concurrent jobs at this mea-
surement. As shown in this figures, if the number of
concurrent jobs is increased, the length of the queue
is increased. For this state, we can use the following
queuing model: The disk access requests from multi-
ple jobs arrive at random, the processing time for the
job is nearly constant, block size is constant and the
window for each disk is one. Therefore, the degree
of congestion of I/O requests from the job, that is, the
length of the queue, accurately reflects the degree of
saturation of the input and output.

By analyzing the relative processing time and the
length of the queue with some parameter setting,
in this experimental environment, we found that the
lengths of the queues are between 2000 and 2700

when the disk resources run out. However, clearly,
this is a range of values. If we analyze the physi-
cal disk in detail, these values may be uniquely deter-
mined. However, in general, the accuracy of the ac-
tual job will not be exact. Therefore, in this method,
we determine this range as the saturated disk load. We
discuss our preliminary experiments in the next sec-
tion.

3.2.2 Preliminary Experiments: Experiment in
Controlling Load Balancing

In our preliminary experiments, we process data-
intensive jobs using Disk Bench in this hybrid cloud
environment. In this experiment, as our threshold for
load balancing, we use the length of the queue for the
disk resource. Using this threshold, by choosing a
value in the range of values determined in the perfor-
mance measurements, we have examined the evalua-
tion of performance and cost.

In this experiment, we received Disk bench jobs
every 2 seconds 100 times. These experiments were
load balancing experiments intended to determine
where to place jobs: whether in private clouds or pub-
lic clouds. For this experiment in hybrid cloud en-
vironments, we ran 8 instances with performance as
indicated in Table 1: 4 instances for each cloud. In ad-
dition, this range of values for the length of the queue
(which was determined by measuring performance)
depends on the physical machine. However, because
all of the physical servers built as hybrid cloud en-
vironments had the same performance, this range is
unified at the above-mentioned value.

First, jobs are placed in one instance in a private
cloud. If the length of the queue for that instance is
equal to or greater than the threshold value, the next
jobs will be distributed under the conditions that the
length of the queue is less than this threshold or that
has not been used within the private cloud. If all of the
queue lengths in a private cloud are equal to or greater
than the threshold value, the public cloud begins to
be used. Then, the next jobs are similarly distributed
until the queue length is greater than or equal to the
threshold.

In this experiment, as the threshold for load bal-
ancing, we varied this value from a small value to
large value from 500 to 12500. By using a value
within the range of values obtained in the perfor-
mance measurement process, we verified whether this
load distribution could provide an optimal balance be-
tween monetary costs and performance as described
in Section 2.2. During this experiment, we measured
the processing time for the jobs, the power consump-
tion rate for the private cloud and the metered rates
for the public cloud. To measure power consumption

Figure 5: Evaluation results for Experiment in Controlling
Load Balancing.

in this environment, we have used a watt-hour me-
ter SHW3A, which is a high-precision power meter
produced by the System Artware Company in Japan.
After one plugs an electric product into the SHW3A,
the power consumption is instantly measured and dis-
played. In this study, we measure only the private
cloud’s node power consumption.

Figure5 shows the evaluation results for the exper-
iment.

The horizontal axis is the processing time cost,
and the vertical axis is the monetary cost. Monetary
costs are calculated using the following equation:
Monetary Cost :TR * NR * CR +PL * CL

TR:Execution time for Public Cloud[hour]
NR:Number of Instances of Use of Public Cloud
CR:Charges for Public Cloud Use[$/hour]
PL:Power Consumption in a Private Cloud[kWh]
CL:Charges for Power Consumption in a Private
Cloud[$/kWh]

In this evaluation, the metered unit price is $0.5
based on the price of Amazon EC2 and the unit price
of power consumption is set at $0.24 based on the
price charged by the Tokyo electric power company.

As shown in Figure 5, there is no configuration
that optimally balances both time costs and mone-
tary costs. However, in selecting a threshold for load
balancing, if we choose a value from 2000 to 2700
based on the performance measurement that indicates
the saturation of the disk resource, we find that load
balancing can be provided based on a Pareto optimal
cost balance. In other words, if we set the threshold
near 2000, although efficiency will be ensured and the
load balancing will occur quickly, the monetary costs
will increase slightly. In contrast, if we set the thresh-
old near 2700, while efficiency will be ensured, it will
take a little time to perform load balancing and ensure
a low monetary cost. The balance of time costs and
monetary costs should be based on the needs of the
user.

Thus, in these preliminary experiments, we could
not find a point that best balances time cost and mone-

tary cost because there is a range in which the disk re-
source is exhausted. However, by setting a threshold
value in response to a user request within this range,
we found that a processing cost balance can be ob-
tained without wasting resources.

3.2.3 Method of Controlling the Load
Distribution in Disk Processing

Based on the discussion in Sections 3.2.1 and 3.2.2,
in the proposed method of load determination for disk
processing, first, by measuring the performance of the
disk, we determine the range for queue length that in-
dicates disk saturation. This phase is regarded as a
learning phase. The threshold for load balancing in
middleware is the length of the queue for the disk re-
source, and the user can select a threshold within that
range, which is determined by the performance mea-
surement process. This middleware can be used to
control the Pareto optimal cost balance load distribu-
tion without wasting resources.

4 The Pareto Optimal Job Allocation
Middleware

4.1 The Structure of the Middleware

Figure6 shows the behavior of the middleware. This
middleware consists of a dispatch unit and monitor
unit. The monitor unit in this middleware (for in-
stance, in hybrid clouds) uses the priority of job place-
ments to check the status of the resource on a regular
basis. As mentioned in the previous section, to check
the status of the resources requires measuring CPU
utilization for CPU processing and the length of the
queue for disk processing. In addition, the middle-
ware evaluates the load status of these resources, de-
termining CPU utilization and disk processing at the
same time, and if the processing becomes saturated,
the middleware determines that. The dispatch unit re-
ceives and distributes jobs based on the information
from the monitor unit.

4.2 An Algorithm for Middleware

This middleware algorithm is as follows. Addition-
ally, when running this middleware in a hybrid envi-
ronment cloud for the first time, as mentioned in Sec-
tion 3.2.3, you must determine the range of the queue
length to identify disk resource saturation.

1. Based on the range of threshold values determined
in the learning phase, the user sets the threshold

Figure 6: Behavior of this middleware.

for load balancing, which can be used to obtain
the desired cost balance, and runs the middleware.

2. Middleware receives the submitted job.

3. In order of placement priority in private cloud in-
stances, check the load state of the resource to de-
termine whether it is greater than or equal to the
threshold. If the resource is at a value that is less
than the threshold value, execute the job using that
instance, and then return to (2). If the load states
of all resources in the private cloud are equal to or
greater than the threshold value, go to (4).

4. In order of placement priority for public cloud in-
stances, check the load states of the resources to
determine whether they are greater than or equal
to the threshold. If the load state is less than
the threshold value, execute the job using that in-
stance; then return to (2). If all of the resource
load states are equal to or greater than the thresh-
old value at that time, proceed to (5).

5. In the public cloud, select a new instance and ex-
ecute the submitted job using that instance; then
return to (2).

5 Experiments using this
middleware

In this chapter, we describe examples of the re-
sults of evaluations conducted using this middleware.
Conducting load balancing experiments using this
middleware for CPU-intensive applications in hybrid
cloud environments is not fundamentally different
from the process used in earlier studies of load bal-
ancing. Therefore, in these examples, we consider the
evaluation results obtained for data-intensive applica-
tions using this middleware.

5.1 Overview of experiments

As shown in Figure 6, as the experimental environ-
ment for this middleware, we have built a hybrid
cloud environment. The node servers that constitute
each cloud are single-core CPUs, and all servers have
the same performance. For this reason, we will gen-
erate one instance of performance from the table 1 for
each node server. There are 4 instances in the private
cloud. If all instances are saturated, we conduct load
balancing using the public cloud resources.

The experiment procedures are as follows. First,
in a learning phase, we measured the performance of
the disk. However, this experimental environment is
the environment in which the performance measure-
ment was carried out in Section 3.2. Therefore, for
all instances in this hybrid cloud, the queue length
range that indicates disk saturation is between 2000
and 2700. Next, based on this range, we execute this
middleware by varying the value of the threshold for
load balancing. During these experiments, we mea-
sured the processing time for the jobs, the cost of
power consumption when the private cloud was used
and the metered rates for the public cloud.

In this experiment, we evaluated these three types
of costs by varying the threshold for load balancing.
In particular, setting the threshold in the range de-
termined by the performance measurement process,
we evaluated whether Pareto optimal load balancing
is possible without wasting resources.

5.2 Data-Intensive Applications that
were used in the Experiment

In these two experiments, we have evaluated middle-
ware used with two different data-intensive applica-
tions.

As the first, we used pgbench, which is the Post-
greSQL benchmark. Pgbench is a simple tool bench-
mark that is bundled with PostgreSQL. Tatsuo Ishii
created the first version, published in 1999 by the
PostgreSQL mailing list in Japan. Pgbench was cre-
ated based on the TPC-B, which mimics the online
transaction process and can measure the number of
transactions that can be processed per unit of time.
We received pgbench’s jobs every two seconds 200
times; the middleware processed these jobs.

For the second, we used queries from DBT-3.
DBT-3 is a simplified version of the TPC-H and
performs complex select statement queries in large
databases. The TPC-H and DBT-3 are decision sup-
port benchmarks and consist of ad-hoc queries and
concurrent data modifications. In the DBT-3, there
are 22 search queries. However, because the pro-

cessing time may be long because of the number of
queries, in this experiment, we select 11 queries for
shorter processing times. Then, we submitted these
queries repeatedly for a total of 110 jobs, and the mid-
dleware processed the jobs. The DBT-3 database was
built using MySQL.

The major difference between these two types of
data intensive applications is the difference in the
CPU processing load. In executing pgbench jobs, we
confirmed that CPU processing is generally not per-
formed. In contrast, the search queries for DBT-3
were processed to some extent with the CPU. How-
ever, all of the search queries were mainly executed
using disk processing; thus, these are data-intensive
applications. For each of these two data-intensive ap-
plications, using this proposed method, we show that
the method does not depend on the nature and type of
application.

5.3 Data Placement in Experiments

In a cloud environment, especially for data-intensive
jobs, considering data placement is very important.
For data placement in a hybrid environment cloud,
we can consider using the block storage associated
with each cloud or using remote access to local stor-
age from the public cloud. In these experiments, it
is assumed that due to remote backup, the neces-
sary data are already located in some instances. In
(S.Toyoshima and M.Oguchi, 2011), using middle-
ware, remote access to the local storage is attained
using iSCSI from a public cloud. We wish to consider
this method of data placement in the future.

5.4 Evaluation of the Results obtained
using Middleware

5.4.1 An example of the use of pgbench

Figure 7 shows the results of the cost evaluation ob-
tained using the middleware, which processed pg-
bench’s jobs.

In Figure 7, as in Section 3.2.2, the vertical axis
shows the monetary cost, and the horizontal axis
shows the time cost. In addition, figure 7 shows de-
tails of the representative points for the load balancing
threshold.

As we can see from this figure, if we set the
correct threshold at the relevant queue length based
on the performance measurement process (i.e., be-
tween 2000 and 2700), this middleware provides a
Pareto-optimal cost balance and uses resources effi-
ciently. Conversely, some points are on a Pareto-
optimal curve even though they are out of the range of

Figure 7: Cost Evaluation of processing pgbench Jobs.

Figure 8: Cost Evaluation of processing DBT-3 queries.

values determined by the performance measurement
process. These points are examples that indicate when
the load balance is too focused on processing perfor-
mance and too many resources are used or when a
tremendous burden has been placed on the available
resources so as not to raise the monetary cost. For
points that are not listed on the Pareto optimal curve
and that for values other than the threshold value, it is
possible that a better cost balance exists.

Based on the above, we found that it is a necessary
condition for the point on the Pareto optimal curve
to set the threshold for load balancing based on the
saturation of the disk resource.

5.4.2 Example using search queries of DBT-3

Figure 8 shows the results of the cost evaluations ob-
tained using the middleware with DBT-3 processing
queries.

In Figure 8, as in Section 3.2.2, the vertical axis
shows the monetary cost, and the horizontal axis
shows the time cost. In addition, Figure 8 shows the
details of the representative points only for set values
for the load balancing threshold.

From this figure, as well as the DBT-3 processing
queries, we can see that if we set the correct threshold
at the queue length determined by the performance

measurement process (i.e., from 2000 from 2700),
this middleware provides a Pareto-optimal cost bal-
ance in which resources are used efficiently. Addi-
tionally, in other respects, results similar to the ones
found using pgbench are obtained.

5.4.3 Observations from these Experiments

Based on the evaluation results for the processing
search queries for DBT-3 and pgbench as examples
of data-intensive applications, we can conclude that
this middleware provides a Pareto-optimal cost bal-
ance while using resources efficiently when we set
the threshold to the queue length determined by the
performance measurement process.

In these experiments, we deliberately added a de-
lay of 20 msec by using Dummynet between the
clouds. However, because only certain jobs are trans-
ferred to the remote cloud in this middleware, some
of the evaluations were barely influenced by the dif-
ferences in the delay time. In addition, because the
unit price of the metered cost for public cloud use
was large, the influence of the differences in power
consumption in the private cloud was limited. How-
ever, for technical and social reasons, these monetary
costs may vary significantly. Even when the proposed
method is used, when the charge for power consump-
tion is more significant, this factor must be kept in
mind during load balancing. However, we can make
this modification by simply changing the cost calcu-
lation expression.

6 RELATED WORKS

Previous researchers have discussed load balanc-
ing in cloud computing (G.JungK. R.Joshi and C.Pu,
2008) and (E.Kalyvianaki and S.Hand, 2009). In
these papers, however, CPU-intensive applications
were used as the targets of load balancing jobs rather
than data-intensive applications. In
computing-centric applications, similarly to some sci-
entific calculations, it is possible to perform appro-
priate load balancing based on the CPU load of each
node. In this research, however, we have used a
data-intensive application for the jobs. In such cases,
because the CPU is often in the I/O waiting state,
load balancing is almost impossible based on CPU
load. In this research, we have used the disk I/O
as a load indicator. In data-intensive applications,
load balancing middleware has also been developed
that uses the amount of disk access for load deci-
sions (S.Toyoshima and M.Oguchi, 2011). This mid-
dleware based on disk access provided dynamic load

balancing between public clouds and a local cluster
and ensured optimal job placement. Because we have
further developed middleware by introducing user-
specified parameters, it will be possible to reduce the
monetary costs of load balancing, including the cost
of power consumption.

Power saving in cloud computing has also been
actively investigated. Unlike in this study, researchers
have discussed an approach to power saving that in-
volves the use of CPU-intensive applications in a
cloud (Che-Yuan Tu, 2010). Other study (C.; Parr,
2011) examined power saving efforts for a cloud dat-
acenter. Our study aims to save power in all clouds,
including private clouds. Researchers (Zhang, 2010)
proposed a scheduling algorithm that could be used
to evaluate power consumption and job execution
time. However, these studies differ from our study,
especially because we have focused on total costs in
hybrid clouds, including job execution time, public
cloud charges at a metered rate, and power consump-
tion charges for private clouds. In addition, we have
used data-intensive applications as the target jobs.

7 Conclusions and Future works

We proposed a method of determining the load
based on the required cost and performance to ensure
efficient processing load balancing in a hybrid envi-
ronment cloud. We have implemented this procedure
using middleware. This middleware uses information
about CPU processing and disk processing to provide
efficient load balancing if the resources needed to per-
form a job are scarce. In particular, in the proposed
method, we determine the load from CPU usage and
the length of the queue for disk processing. First, in a
learning phase, by measuring the performance of the
disk, we determine the range of queue lengths that in-
dicate disk saturation. The user can select a threshold
within that range, which is determined by the perfor-
mance measurement process. Using this middleware,
tone can control the Pareto optimal cost balance load
distribution without wasting resources.

Future research should be focused on improving
data placement. In the experiments in this paper, data
placement was the task of interest. This data place-
ment is not realistic as a model for real situations. A
realistic model might aggregate local and remote stor-
age and synchronize these forms of storage. There-
fore, we are considering introducing network storage.
In our system, iSCSI has already been introduced, and
we plan to carry out an experiment using iSCSI in
the future. In addition, in the current implementation,
based on the values obtained in the learning phase, the

threshold should be set for load balancing before run-
ning the middleware. In the future, we would like to
develop an automating learning phase as a part of this
middleware.

ACKNOWLEDGEMENTS

This work is partly supported by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology,
under Grant 22240005 of Grant-in-Aid for Scien-
tific Research. The authors would like to thank to
Drs. Atsuko Takefusa, Hidemoto Nakada, Ryousei
Takano, Tomohiro Kudoh at the National Institute of
Advanced Industrial Science and Technology (AIST),
Project Associate Professor Miyuki Nakano, Assis-
tant Professor Daisaku Yokoyama, Senior Researcher
Norifumi Nishikawa at the Institute of Industrial Sci-
ence, the University of Tokyo, and Associate Profes-
sor Saneyasu Yamaguchi at Kogakuin University for
the conscientious advice and help with this work.

REFERENCES

C.; Parr, G.; McClean, S. (2011). Energy-aware data centre
management. pages 1–5. Communications (NCC),
2011 National Conference.

Che-Yuan Tu, Wen-Chieh Kuo, W.-H. T. Y.-T. W. S. S.
(2010). A power-aware cloud architecture with smart
metering. pages 497–503. Parallel Processing Work-
shops (ICPPW), 2010 39th International Conference.

D.Nurmi, R.Wolski, C. G.-S. L. D. (2010). The eucalyptus
open-source cloud-computing system. pages 62–73.
Distributed Computing Systems (ICDCS), 2010 IEEE
30th International Conference.

E.Kalyvianaki, T. and S.Hand (2009). Self-adaptive and
self-configured cpu resource provisioning for virtu-
alized servers using kalman filters. In Proc. 6th In-
ternational Conference on Autonomic Computing and
Communications (ICAC2009).

G.JungK. R.Joshi, M.A.Hiltunen, R. and C.Pu (2008). Gen-
erating adaptation policies for multi-tier applications
in consolidated server environments. pages 23–32.
In Proc. 5th IEEE International Conference on Auto-
nomic Computing (ICAC2008).

S.Toyoshima, S. and M.Oguchi (2011). Middleware for
load distribution among cloud computing resource
and local cluster used in the execution of data-
intensive application.DBSJ Journal, Vol.10, No.1.

Zhang, L. M. Z. K. L. Y.-Q. (2010). Green task schedul-
ing algorithms with speeds optimization on heteroge-
neous cloud servers. pages 76–80. Green Computing
and Communications (GreenCom), 2010 IEEE/ACM
Int’l Conference on and Int’l Conference on Cyber,
Physical and Social Computing (CPSCom).

