
PROPOSED OF A LOAD BALANCING METHOD FOR DATA
INTENSIVE APPLICATIONS ON A HYBRID CLOUD ACCOUNTING

FOR COST INCLUDING POWER CONSUMPTION

Yumiko Kasae1, Masato Oguchi1

1Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
yumiko@ogl. is. ocha. ac. jp , oguchi@computer. org

Keywords: Hybrid Cloud, Power Consumption, Middleware, Load Balancing, Evaluation of Costs, Data-Intensive Appli-
cation

Abstract: Based on the recent explosive increase of information in computer systems, we need a system that can effi-
ciently process large amounts of data with limited resources. In this paper, we propose a method to implement
such a system in its Hybrid Cloud environment, implemented as Middleware. Using this Middleware, the user
can not only efficiently process large amounts of data but can also control monetary costs, including power
consumption, by setting parameters. Furthermore, we evaluate the total costs, calculated by Execution Time,
Public Cloud’s Metered Rates and Charge of Power Consumption on the Private Cloud when running our
Middleware.

1 INTRODUCTION

Due to the recent explosive increase of information
in computer systems, we need a system that can ef-
ficiently process a large amount of data with lim-
ited resources. To achieve this, using cloud com-
puting is effective, and it has spread throughout the
world. However, this diffusion has caused power
consumption to increase in the equipment used to
build a cloud. Moreover, according to the global eco-
conscious trend, we should reduce the power con-
sumption of computer systems.

To reduce power consumption, it is possible to
develop power-saving computer systems and air-
conditioning equipment. However, it is often difficult
to realize such a power-saving system from the hard-
ware perspective. We thus also require a software ef-
fort to this end. In this research, focusing on a hybrid
cloud in cloud computing, which is a combination of
public and private clouds, we propose a method that
can both process a large amount of data and control
monetary costs, including power consumption. We
have implemented the system as middleware.

The middleware has two characteristics. First, as
a target job, we have used a data-intensive applica-
tion. The middleware measures disk I/O periodically
as an indicator for load-balancing decisions. Second,
the middleware aims to realize power-saving load bal-
ancing. This middleware considers two types of costs:

time and monetary cost. The time cost is the execu-
tion time, and the monetary cost is the sum of the
charge of a public cloud at a metered rate and the
charge of power consumption on a private cloud. The
power consumption charge on a public cloud is in-
cluded in the charge at a metered rate because it is
difficult for a user to know the actual power consump-
tion charge on a public cloud; it should therefore be
included in the charge at a metered rate.

In this middleware, it is possible to realize power-
saving oriented load balancing by controlling the rate
of private/public cloud usage. By changing the pa-
rameters, users can choose to lay weight on either ex-
ecution time or monetary cost, which includes power
consumption. In this paper, we have measured and
calculated execution time, the charge of a public cloud
at a metered rate, and the power consumption charge
on a private cloud while executing the application
with our middleware. Using these results, we have
estimated the time and monetary costs. Moreover, we
have evaluated these costs when users decide the im-
portance of both costs.

The remainder of this paper is organized as fol-
lows. Section 2 introduces related research studies.
Section 3 shows an experimental system of the hy-
brid cloud that we have constructed in this study. Sec-
tion 4 describes our proposed method and introduces
how to implement it as middleware. Section 5 intro-
duces the results of the execution using our middle-



ware. Section 6 evaluates our middleware, and Sec-
tion 7 presents concluding remarks.

2 RELATED WORKS

Previous researchers have discussed load balanc-
ing in the cloud computing (Gueyoung Jung and Pu,
2008) and (Evangelia Kalyvianaki and Hand, 2009).
In these papers, however, CPU-intensive applications
were used as targets of load balancing jobs, and not as
data-intensive applications. In computing-centric ap-
plications, like some scientific calculations, perform-
ing appropriate load balancing based on the CPU load
of each node is possible. In this research, however,
we have used a data-intensive application as a target
of the jobs. In such a case, because the CPU is often
in the I/O waiting state, load balancing is almost im-
possible by CPU load. In this research, we have used
the disk I/O as a load indicator.

In data-intensive applications, load balancing
middleware was also developed using the amount of
disk access for load decisions (Shiori Toyoshima and
Oguchi, 2011). This middleware, based on disk ac-
cess, provided dynamic load balancing between pub-
lic clouds and a local cluster and performed the op-
timal job placement. As we have further developed
middleware by introducing user-specified parameters,
it becomes possible to reduce the monetary costs of
load balancing, including power consumption.

Power saving in cloud computing has also been
actively investigated. Unlike this study, researchers
have discussed an approach to power saving when
executing CPU-intensive applications in a cloud
(Kazuki Mochizuki, 2011), (Che-Yuan Tu, 2010).
Another study (C.Peoples and S.McClean, 2011) ex-
amined power saving efforts for a cloud datacenter.
Our study aims to save power in entire clouds, includ-
ing private clouds. Researchers (Luna Mingyi Zhang,
2010) proposed a scheduling algorithm considering
power consumption and a job’s execution time. How-
ever, these studies differ from our study, especially
because we have focused on the point at which to-
tal costs in the hybrid cloud are discussed, consisting
of job execution time, public cloud charge at a me-
tered rate, and power consumption charge on a pri-
vate cloud. In addition, we have used data-intensive
applications as target jobs.

3 ENVIRONMENT FOR
EVALUATION

In this paper, we have used the cloud-building
software, Eucalyptus(Daniel Nurmi, 2010) to build
two cloud systems. Eucalyptus, as Virtualization
Software, supports Xen and KVM. In previous re-
search that investigated characteristics of virtual-
ization software (Kasae and Oguchi, 2011), Xen
was found superior to KVM in performance, espe-
cially when data-intensive jobs are executed in a
Eucalyptus-built cloud. Therefore, we have used Xen
in this experiment.

Figure 1 shows the organization of the Eucalyp-
tus system. Eucalyptus has three layers: Cloud Con-
troller (CLC), Cluster Controller (CC), and Node
Controller (NC). CLC, with a compatible interface
EC2, performs control based on the content requested
by the user. CC performs network control between
an instance and an external cloud or among instances.
Instance refers to a virtual machine provided by the
cloud. NC performs instance control.

Figure 1: The sysmtem of Eucalyptus

We have built an emulated hybrid cloud environ-
ment in our laboratory. Figure 2 shows an experimen-
tal system developed in this research. In the Hybrid
Cloud experimental system, the Private Cloud has a
Frontend Server that performs the CLC and CC and
four Node Servers, in which instances are created.
Similarly, the Public Cloud has 1 Frontend Server
unit and 4 Node Server units. The Private and Pub-
lic Clouds are connected to Dummynet, which artifi-
cially causes delay.

Tables 1 and 4 provide specifications for each
physical machine. The two Frontend Servers have
two network ports: one is connected to the Node
Servers, and the other to an external network. With



this configuration, each Node Server is independent
from the external network.

To measure power consumption in this en-
vironment, we have used the watt-hour meter
SHW3A(SHW3A, 2008)., which is a high-precision
power meter produced by the System Artware Com-
pany in Japan. After plugging an electric product into
SHW3A, the power consumption is instantly mea-
sured and displayed. This study only measures the
Private Cloud’s Node power consumption. In reality,
it is difficult for users to know the amount of power
consumed by a Public Cloud. Instead, in the Pub-
lic Cloud, we have assumed that the power consump-
tion charge is included in the Public Cloud charge at
a metered rate. This is discussed later. The measured
power consumption is collected by a monitoring PC.

　

Figure 2: The System for Experiment

Table 1: Private Cloud Frontend

OS Linux 2.6.38/Debian GNU/Linux 6.0
CPU Intel(R) Xeon(R) CPU @ 3.60GHz
Memory 4GByte
Disk 141GByte

Table 2: Private Cloud Node

OS Linux 2.6.32-xen-amd64 and xen-4.0-amd64
/Debian GNU/Linux 6.0

CPU Intel(R) Xeon(R) CPU @ 3.60GHz
Memory 4GByte
Disk 222GByte

Table 3: Public Cloud Frontend

OS Linux 2.6.38/Debian GNU/Linux 6.0
CPU Intel(R) Xeon(R) CPU @ 2.40GHz
Memory 1GByte
Disk 72GByte

Table 4: Public Cloud Node

OS Linux 2.6.32-xen-amd64 and xen-4.0-amd64
/Debian GNU/Linux 6.0

CPU Intel(R) Xeon(R) CPU @ 3.60GHz
Memory 4GByte
Disk 141GByte

4 PROPOSED LOAD BALANCING
METHOD AND MIDDLEWARE
INPLEMENTATION

4.1 Load Balancing Method used in
Hybrid Cloud

This section explains the middleware that implements
the proposed load balancing method. This Middle-
ware performs load balancing of data-intensive jobs
during runtime. It estimates the number of jobs by
monitoring the disk I/O of the private and public
clouds. In a sequence where data-intensive appli-
cation jobs are submitted consecutively, after all re-
sources in the private cloud are fully utilized, the next
job is distributed to the public cloud’s resources. In
the public cloud, after fully utilizing resources for
submitted jobs, new instances in public cloud are also
acquired, and their resources are used for the next
jobs.

Because this middleware performs load balanc-
ing after using up the resources, the Total Cost (dis-
cussed below) can be reduced and the jobs are pro-
cessed efficiently. In addition, by changing parameter
settings according to the user’s instructions, power-
saving load distribution can also be achieved.

This middleware, namely with shell scripts and C
programs running on the Frontend of a Private Cloud,
contains Monitor and Dispatch Units. The Monitor
Unit collects information on the disk I/O periodically,
using thedstatcommand. The Dispatch Unit, based
on the disk I/O information collected at the Moni-
tor Unit, receives jobs and submits them to private or
public cloud as load balancing.

4.2 Disk I/O Saturation Decision

This middleware uses the disk I/O to decide on
resource exhaustion because it focuses on data-
intensive jobs. For data-intensive jobs, as the system
often waits for I/O processing, it is difficult to deter-
mine the CPU load. The disk I/O thus decides the
system load.

Figure 3 shows a graph of execution time and disk
I/O when data-intensive jobs are thrown in every two



seconds. According to Figure 3, as the number of
jobs increases, the value of disk I/O becomes satu-
rated. When this occurs, the execution time becomes
longer compared to the baseline condition, which is
not the case with the saturated disk I/O.

This middleware thus is used only within a range
where resource usage is not saturated. The middle-
ware periodically measures the disk I/O value. When
the disk I/O exceeds a saturation value (hereafter ’S’)
designated times, the instance is considered saturated,
and load balancing to another instance is performed.
When the disk I/O falls below the S value, the instance
is not considered saturated. This is one of the most
suitable methods to estimate saturation because the
disk I/O value is unstable.

　
Figure 3: DiskIO amd Execution Time of executing Data
Intensive Application

Users can determine the saturation level param-
eters of this middleware. Users can control load
balancing by weighting either the execution time or
monetary cost, which includes power consumption.
Changing the saturation level means changing the fol-
lowing two parameters: ”the number of times the in-
stance’s disk I/O exceeds the S value (hereafter ’M’)”
and ”the number of times the instance’s disk I/O falls
below the S value (hereafter ’L’)”.

If the M value decreases and the L value increases,
jobs are easily considered saturated, which makes
heavy use of the public cloud. In other words, as
more monetary costs exist, job processing times be-
come faster. Conversely, if the M value increases
and the L value decreases, jobs are less likely to be
saturated, and most jobs are processed in the private
cloud. In this case, though the job processing time
becomes longer, monetary costs, including the energy
consumption charge, can be lowered.

4.3 Evaluation Indices of Middleware

Considering load distribution in a cloud, many tasks
can be executed in parallel using many instances on
a public cloud, and the overall execution time is thus
expected to be shortened. However, if many instances
on public cloud are employed, though the power con-
sumption charge on a private cloud is suppressed, the
public cloud charge at a metered rate increases.

To achieve load balancing on hybrid clouds while
accounting for power saving, it is important to allo-
cate resources based not only on execution time but
also on the cost and power consumption. As an eval-
uation index for this middleware, the time and mon-
etary costs are thus considered. The time cost is the
job execution time. The monetary cost is sum of the
power consumption charge on a private cloud and the
public cloud charge at a metered rate.

4.4 Middleware Algorithms

In our experiments, we assume that jobs are consecu-
tively submitted into the system.

(1) Receive jobs that are consecutively submitted.

(2) Check all instances’ disk I/O in the Private Cloud.
If the higher priority instance’s disk I/O value is
not saturated, run the jobs in that Private Cloud
instance and return to Step (1).

If all Private Cloud instances are saturated, pro-
ceed to Step (3).

(3) Examine whether the disk I/O value of the high
priority instance in the Public Cloud is saturated.
If the instance is not saturated, run the jobs in that
instance and return to Step (1). If not found, go to
Step (4).

(4) Rent one instance in the Public Cloud, run the jobs
in that instance, and return to Step (1).

First, the middleware checks the status of the disk
I/O on the private cloud; it next examines the status
of the disk I/O on a higher priority instance on the
public cloud. By executing jobs at a vacant status in-
stance with higher priority, the middleware realizes
well-balanced load balancing while considering time
and monetary costs.



5 MAIN EXPERIMENTS AND
MEASUREMENTS

5.1 Experiment Overview

In this experiment, as shown in Figure 4, after gen-
erating one instance in every Node server in both
clouds, load balancing was performed in eight total
instances. Table 5 shows the performance of every
instance. In the public cloud, the instances are gener-
ally available without restriction. In this experiment,
the total number of thrown jobs is capable of load bal-
ancing within the public cloud’s 4 instances.

　

Figure 4: The System For Experiment

Table 5: Instance

OS Linux 2. 6. 27. 21-0.1-xen /
x86 84 GNU / CentOS 5.3

CPU Intel(R) Xeon(R) CPU @ 3.60GHz 1 core
Memory 1024MByte
Disk 10GByte

In the experiment, the saturation level varies by
changing the M values, as in Table 6, but maintains
a fixed L value, described in Chapter 4. In this sat-
uration level, if the level is small, the load is easily
distributed, and if the level is large, the load is hard to
be distributed.

Table 6: The Load Balance Level

Level Value of L Value of M
I 5 2
II 5 3
III 5 4
IV 5 5
V 5 6
VI 5 7
VII 5 8
VIII 5 9
IX 5 10

When varying the saturation level, we thus mea-
sure the job processing time, metered public cloud
costs and private cloud’s power consumption rates.
We then evaluate these costs.

5.2 Data Placement

For load balancing when using the cloud, it is impor-
tant to consider data placement. This experiment con-
siders placement using a block storage attached to a
cloud or remote access to local storage from a public
cloud instance, which assumes that we have already
placed the instance data. Data placement will be dis-
cussed in detail in a future work.

5.3 About Populated Jobs

As a job to bring into this experiment, we
sought a data-intensive application and used pg-
bench(pgbench, 1999)., which is the PostgreSQL
benchmark. Pgbench is a simple tool benchmark that
is bundled with PostgreSQL. Tatsuo Ishii created the
first version, published in 1999 by the PostgreSQL
mailing list in Japan. The program now comes with a
contrib, now distributed with the PostgreSQL source
code. Because this benchmark uses a basic server-
side database based on TPC-B, the performance can
be judged by the number of transactions allowed per
second in this experiment to create a PostgreSQL
database on the local 6 Gbyte in all instances. The
number of clients in this job is 1, and number of trans-
actions is 500. We were thrown jobs every two sec-
onds 200 times. The processing time per job is ap-
proximately 9 seconds. In this experiment, we as-
sumed that independently data-intensive small jobs,
including pgbench, were continuously thrown.

5.4 Measurment Result

Figures 5, 6, and 7 show the measurements. Figure
5 shows the job processing time. Figure 6 shows the
costs of the metered public cloud. Figure 7 shows the
private cloud’s power consumption. In each graph,
the horizontal axis shows the number of submitted
jobs.

Figure 5 shows the entire time until all jobs are
submitted. Figure 6 shows the public cloud charge.
This is computed by multiplying the metered charge
by the number of rented public cloud instances plus
the job execution time. The public cloud’s metered
charge is based on the metered charge AmazonEC2;
instances in this study had performance calculated as
$ 0.5 per hour. Figure 7 shows the power consump-
tion until all jobs are submitted to the private cloud.



　

Figure 5: Execution Time
　

　

　
Figure 6: Public Cloud’s Metered rates

　

　

　
Figure 7: Charges of Power Consumption on Private Cloud

Power consumption rates, with reference to TEPCO’s
electricity rates, were calculated as $ 0.5 per 1kwh.

In Figure 5’s graph, despite equal processing
times in levels I and II, the metered charge’s level
I is higher than its level II in Figure 6’s graph. For
this job, load balancing can have enough resources to
reach level II. The saturation level of level I is wasting
public cloud resources. From saturation levels III to
IX, the metered charge is lower as the level increases,
as in Figure6, indicating that load balancing becomes
difficult. Accordingly, job processing also takes time.

As Figures 7 and 5 are similar, the processing time
clearly has a significant impact on energy consump-
tion. By varying saturation levels in this middleware,
we thus realized ways to control the power consump-
tion rates in a private cloud, metered rates in a public
cloud and job execution time.

In addition, Figure 8 indicates the execution time
per job and the Disk I/O value when running the mid-
dleware.

　

Figure 8: the load balancing control corresponding to Disk
I/O

First, an instance named private cloud 1 is thrown
to the job. If private cloud 1 is determined to be
saturated by the saturated Disk I/O value, the job is
submitted to private cloud 2. After saturating Private
Cloud 2, the job is thrown to Private Cloud 3. After
saturating Private Cloud 3, load balancing sends the
job to Private Cloud 4. At this time, private cloud 1’s
Disk I/O saturation is alleviated, and the next job is
put into a private cloud. In this condition, as had been
saturated with all instances in the private cloud, the
following jobs are load balanced to the public cloud.
Load balancing can thus be achieved by having the
middleware control the Disk I/O.

6 EVALUATING MIDDLEWARE
IMPLEMENTATION USING
THE PROPOSED METHOD

6.1 Evaluation Overview

In this section, based on the results of measurements
in Chapter 4, we have evaluated the middleware. In
this middleware, consider the following equation as
an evaluation index.

Total cost = F*Ttotal+ ( TR * NR * CR +PL * CL )

Ttotal:Execution time of Total Jobs
TR:Execution time on the Public Cloud



NR:Number of Instances used on the Public Cloud
CR:Public Cloud Charges
PL:Power Consumption on the Private Cloud
CL:Charges of Power Consumption on Private Cloud
CL:Power Consumption Charges on the Private Cloud
F :The Factor for Converting Money into Time

The first term represents the time cost of the execution
time. The second term represents the monetary cost,
which is the sum of the power consumption rates on a
private cloud and the charge of metered costs on pub-
lic cloud. We have considered the power consump-
tion charge on a public cloud, which includes the me-
tered cost, because it is difficult for a user to know
the actual charge. If users know how much power is
consumed by the public cloud, the users’ motivation
determines whether to try to reduce its power.

Factor F is intended to be converted into mone-
tary and time costs. The users use factor F to decide
how to balance the time and monetary costs. In this
chapter, we first discuss the financial costs using the
metered and power rate pricing. Based on the mone-
tary costs considered, we then evaluate the total cost
by varying the factor F in the above formula.

6.2 Discussion of Monetary Costs

In this study, we have considered the monetary cost,
which is the sum of the metered public cloud charges
and power consumption rates of the private cloud.
These two amounts are not always constant, as many
cloud provider’s recent metered rates have not neces-
sarily been constant. Moreover, as such providers in-
crease in the future, metered rates may decrease based
on price competition, but may be higher now. This
is also true for energy consumption rates. Based on
these facts, we have considered the various financial
costs when evaluating this experiment, as the prices
of both energy consumption and metered rates vary.
In the experiment, we have converted the metered
charges as $0.5 per instance and power consumption
rates as $0.5 per 1 kwh. In this evaluation, as in
Figure9, metered rates varied from $0.5 to $1.5, and
power consumption rates varied from $0.5 to $3.0.
When changing one value, the other was fixed at its
initial value.

Figure 9 shows that, for most pricing, the financial
costs of level 1 were larger. In this experiment, this
means that the metered costs are more expensive than
the energy consumption charge. However, by vary-
ing the amount of $3.0, which is a high power con-
sumption charge, we have found relatively equal costs
at every level. In this pricing, the metered charges
form the majority of the monetary cost at low lev-
els, but at higher levels, the metered rates are smaller,

　
Figure 9: The Monetary costs

and increase the percentage of electricity consump-
tion charges. The total financial cost has not changed.
Figure 9 presents the typical results: PowerConsump-
tion: CloudCost = $3.0: $0.5, $1.5: $0.5, $0.5: $0.5,
$0.5: $1.0, $0.5: $1.5 . We have assumed that these
results are representative examples. Using these mon-
etary costs, we have evaluated the total cost.

6.3 Evaluation of Total Cost

When evaluating the total cost, we have used the for-
mula described in section 5.1. In this formula, factor
F is important. Using factor F, the total job execution
time is converted into monetary costs. In this evalu-
ation, the F value has changed between 1/20, 1/200,
1/2000 and 1/20000. Using F=1/20 means that the
user considers processing time to be the most impor-
tant cost, whereas using F=1/20000 means that the
user considers monetary cost to be the most impor-
tant. Figures 10, 11, 12, and 13 show that the Total
Cost of factor F varies. In addition, as discussed in
Section 5.2, monetary cost pricing is also changed in
these figures.

　
Figure 10: Total Cost ( F =1/20 )

As Figure 10 is the result that considered process-
ing time to be the most important cost, there is little
change in the pricing of each. This result primarily in-



　
Figure 11: Total Cost ( F = 1/200 )

　
Figure 12: Total Cost ( F = 1/2000 )

　
Figure 13: Total Cost ( F = 1/20000 )

dicates that the result depends only on the processing
time. For this reason, to provide the time-critical load
distribution processing by the user requires setting the
level I parameters, at the lowest saturation level. This
provides a reasonable result. Figure 11 was compared
to Figure 10, but when considering the financial cost,
there is almost no difference between two graphs. In
Figure 11, as in Figure 10, the user specifying level
I, which is the lowest saturated level, can reduce the
total cost.

However, these results are different in Figure 12.
This result is a cost evaluation, which suppresses pro-
cessing time and monetary costs. Figure 12 indicates
a difference in Total Cost when examining the pric-
ing. PowerConsumption: CloudCost = $0.5: $0.5,
$0.5: $1.0,$0.5: $1.5, if the power consumption of

the private cloud charges are fixed, and the pricing of
the rates change metered is change, the total cost is
the smallest in level VI or level V.

In this experiment, there is almost no difference
in the number of jobs when considering the total cost,
which is sum of the time and monetary costs, even
when executing the load distributed between level I
and V, and we also find that this has the lowest cost.
In this pricing, if the user set up parameters of level V
from those in level I, the middleware thus provides
load balancing that controls both Time and Mone-
tary Costs. PowerConsumption: CloudCost = $0.5:
$0.5, $0.5: $1.0,$0.5: $1.5 such that if the private
cloud charges power consumption is fixed and the rate
change metered pricing changes, the total cost is the
smallest in levels V or VI.

When considering the Total Cost of the impor-
tance of metered rate pricing, these results indicate
that the middleware, following the user-set parame-
ters for levels V or VI, execute load balancing that
reduces both Time and Monetary Costs.

In Figure13, because it is little consider of time
cost, and largely reflected the impact of mone-
tary cost. Figure13 does not greatly consider time
cost, which largely reflects the impact of mone-
tary cost. That is the Total Cost of monetary cost-
consciousness.

PowerConsumption: CloudCost = $3.0: $0.5,
$1.5: $0.5 such that if the monetary costs are domi-
nated by power consumption rate pricing on a private
cloud, the Total Cost creates little difference between
levels. This pricing causes no change in the Total
Cost when executing this middleware, as the pricing is
more important to monetary costs, even following the
user parameter settings. In addition, PowerConsump-
tion: CloudCost = $0.5: $0.5, $0.5: $1.0, $0.5: $1.5
such that if the private cloud rate power consumption
is fixed and the metered cost rate has changed, as in
level IX, and if most jobs were executed in the Pri-
vate Cloud without using the Public Cloud, the user
can control the Total Cost. Therefore, when consider-
ing the Total Cost of the importance of metered rate
pricing and Monetary Cost, the middleware, follow-
ing the user-set parameters for level IX, executes load
balancing that reduces Monetary Costs.

7 CONCLUSIONS

In this research, especially focusing on hybrid
clouds, we have proposed a method that can process
large amounts of data and control the monetary cost,
which includes power consumption. We have also
implemented the System as Middleware. Using this



Middleware, the user can not only efficiently process
large amounts of data, but also control the monetary
cost, which includes power consumption, by setting
parameters. By varying the parameters to run the mid-
dleware, we have measured and calculated processing
time, public cloud metered rates and power consump-
tion charge on a private cloud. We have evaluated
the total cost by calculating the sum of the costs and
the financial time costs. This evaluation showed that
this middleware perform load balancing can reduce
costs if the actual user sets the parameters. To re-
duce load balancing in both the Time and Financial
costs, we have demonstrated that this middleware is
successfully implemented.

ACKNOWLEDGEMENTS

This work is partly supported by the Ministry of Edu-
cation, Culture, Sports, Science and Technology, un-
der Grant 22240005 of Grant-in-Aid for Scientific Re-
search. The authors would like to thank to Drs. At-
suko Takefusa, Hidemoto Nakada, Ryousei Takano,
and Tomohiro Kudoh at the National Institute of Ad-
vanced Industrial Science and Technology (AIST) for
the conscientious advice and help with this work.

REFERENCES

Che-Yuan Tu, Wen-Chieh Kuo, W.-H. T. Y.-T. W. S. S.
(2010). A power-aware cloud architecture with smart
metering. pages 497–503. Parallel Processing Work-
shops (ICPPW), 2010 39th International Conference.

C.Peoples, G. and S.McClean (2011). Energy-aware data
centre management. pages 1–5. Communications
(NCC), 2011 National Conference.

Daniel Nurmi, Rich Wolski, C. G. G. O. S. S.-L. Y. D. Z.
(2010). The eucalyptus open-source cloud-computing
system. pages 62–73. Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference.

Evangelia Kalyvianaki, T. C. and Hand, S. (2009). Self-
adaptive and self-configured cpu resource provision-
ing for virtualized servers using kalman filters. In
Proc. 6th International Conference on Autonomic
Computing and Communications (ICAC2009).

Gueyoung Jung, Kaustubh R. Joshi, M. A. H. R. D. S.
and Pu, C. (2008). Generating adaptation policies for
multi-tier applications in consolidated server environ-
ments. pages 23–32. In Proc. 5th IEEE International
Conference on Autonomic Computing (ICAC2008).

Kasae, Y. and Oguchi, M. (2011). Evaluation of energy
consumption using private cloud system with various
condition. In Proc. Multimedia, Distributed, Cooper-
ative, and Mobile Symposium(DICOMO2011).

Kazuki Mochizuki, K. S. (2011). Evaluation of optimal re-
source allocation method for cloud computing envi-
ronments with limited electric power capacity. pages
1–5. Network-Based Information Systems (NBiS),
2011 14th International Conference.

Luna Mingyi Zhang, Keqin Li, Y.-Q. Z. (2010). Green
task scheduling algorithms with speeds optimization
on heterogeneous cloud servers. pages 76–80. Green
Computing and Communications (GreenCom), 2010
IEEE/ACM Int’l Conference on and Int’l Conference
on Cyber, Physical and Social Computing (CPSCom).

pgbench (1999). http://www.postgresql.org/docs/
current/static/pgbench.html .

Shiori Toyoshima, S. Y. and Oguchi, M. (2011). Middle-
ware for load distribution among cloud computing re-
source and local cluster used in the execution of data-
intensive application.DBSJ Journal, Vol.10, No.1.

SHW3A (2008). http://www.system-artware.co.jp/
shw3a.html .


