
Performance Improvement of iSCSI Remote Storage
Access through Optimization of Multiple Layers

Masato Oguchi, Reika Higa*
Ochanomizu University, Tokyo, Japan

Email: oguchi@computer.org, reika@ogl.is.ocha.ac.jp
*currently with NTT DOCOMO, INC.

Kosuke Matsubara, Takao Okamawari
Softbank Telecom Corporation, Tokyo, Japan

Email: {kosuke.matsubara, takao.okamawari}@tm.softbank.co.jp

Saneyasu Yamaguchi
Kogakuin University, Tokyo, Japan

Email: sane@cc.kogakuin.ac.jp

Abstract— iSCSI is one of the most popular protocols among
the storage area network (SAN) working on an IP network.
iSCSI is a standard to encapsulate a SCSI command into a
TCP/IP packet, thus we can make an access to a storage
system with commoditized IP devices only. In this paper,
iSCSI sequential write access for a remote backup system is
focused. It is well known that iSCSI experiences
performance degradation under a high latency environment.
The storage access by iSCSI has multiple hierarchical
protocols. Due to this complicated structure, it is very
difficult to identify the performance bottleneck that causes
the degradation. Therefore, system tools which can analyze
the complicated layered structure are required. We have
developed system tools that enable us to monitor the
hierarchical protocols. As a result, we have identified the
cause of the iSCSI performance degradation problem. We
then fixed the problem and confirmed that one can obtain
the performance close to the theoretical limit.

Index Terms—iSCSI, SAN, TCP, Kernel, Optimization,
Performance

I. INTRODUCTION

Recently, with the rapid spread of broadband networks
and the improved technologies of computer system, a
large volume of data is stored and managed in a storage
system in many business fields. In addition, remote data
backup is regarded as an essential system to protect
important data from a natural disaster or a terrorist attack.
High speed data access technology to a storage device
over long distance is a key to realize the remote backup
system.

However, due to rapid increase of a volume of data,
the storage management cost is one of the most serious
issues of storage systems. Storage Area Network (SAN)
is a high-speed network that connects multiple storage
devices to servers. Because SAN allows the storage to be
consolidated and managed in a centralized manner, it is
widely used in storage area for an efficient management

of many storage devices. FC-SAN, which is widely used
already, connects servers and storage with Fibre Channel.

Due to defects in FC-SAN including its hardware costs
and a distance limitation (up to about 10km), significant
barriers exist in the introduction of FC-SAN. For this
reason, IP-SAN configured with inexpensive Ethernet
and TCP/IP is introduced. One of the candidates for the
technology is iSCSI [1], by which one can use SCSI
protocol over an IP network. iSCSI encapsulates a SCSI
command, which is widely used in Direct Attached
Storage (DAS), within a TCP/IP packet and transports the
volume of data between server (Initiator) and storage
(Target). In the future, since the Gigabit and 10 Gigabit
class lines are expected to be more popular by
development of the Internet, iSCSI will be effective
furthermore.

However, iSCSI has an extremely complicated
structure, i.e. "SCSI/iSCSI/TCP/IP/Ethernet", as shown in
Figure 1. In addition, since it transmits the burst data, the
degradation of the performance is remarkable in the high
latency environment. It is pointed out in previous papers
that the iSCSI has a problem when it is used over long
distance, i.e. high latency environment due to the
complicated protocol stack [2,3]. To mitigate the problem,
several methods to improve the iSCSI throughput were
proposed [2-4]. In our previous work [3], we found that
the obtained performance for iSCSI sequential write is far
below than the theoretically expected value in the high
latency environment.

Figure 1. Configuration of iSCSI

538 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.3.538-546

Basically, iSCSI throughput cannot reach beyond the
limit performance of TCP/IP which is laid at the lower
layer. Thus, in iSCSI remote storage access, optimization
not only in iSCSI layer but also in other layers is
expected to improve iSCSI performance.

In this work, we have developed several tools to
analyze the system to find the cause of the performance
degradation. In the case of remote backup, the amount of
writing data is more than that of reading. In addition, it
should sometimes be assumed that only a non-customized
system can be used for iSCSI Target. Thus in our
research work, iSCSI software at Initiator is optimized.
By the optimization, we have achieved extremely good
performance of iSCSI sequential access in a high latency
environment.

The rest of the paper is organized as follows. Section II
describes a research background. Basic optimization of
iSCSI acces is shown in Section III. Section IV describes
preparation for analysis including an introduction of our
system tools. Through Section V to VIII, the cause of the
performance degradation is analyzed from various points
of view. Finally, Section IX presents the conclusion.

II. BACKGROUND OF OUR RESEARCH

A. Experimental Environment
In our previous work [3], we applied various

techniques, including parameter optimization for iSCSI,
TCP, and network interface card, to improve the iSCSI
write access performance under high latency environment.
[4, 5] The schematic diagram of our experimental setup is
shown in Figure 2. We have investigated a point to point
iSCSI connection. Initiator and Target are workstations
which have 1.6GHz Quad Core Intel Xeon, respectively.
They are connected with Gigabit Ethernet and TCP/IP
connection is established between them. As Target
storage, SAS disks are used with RAID0 configuration.
As an operating system, Linux 2.6.18-8 is used. As for
iSCSI software, open iSCSI [6] and iSCSI Enterprise
Target [7] are used. We have artificially inserted delay
between Initiator and Target by using a network
simulator.

iSCSI initiator
Intel Xeon 1.6GHz Quadcore
Linux kernel 2.6.18-8
Open iSCSI

iSCSI target
Intel Xeon 1.6GHz Quadcore
Linux kernel 2.6.18-8
iSCSI Enterprise Target

Network Simulator
Artificial delay insertion

Figure 2. Schematic diagram of experimental setup

B. TCP Congestion Window Control Algorithms
TCP is used as transport layer in iSCSI. TCP packet

transmission is controled by window size. There are two

window sizes, that is, advertisement window and
congestion window. Advertisement window is a
parameter notified from a receiver to a sender, which
informs the remained buffer size of the receiver. On the
other hand, congestion window is a parameter controlled
by a sender, which restrict the number of packets in order
to avoid network congestion.

Basically, TCP congestion window is controlled by
slow start phase when a packet transmission begins. This
increases the size of congestion window as an
exponential manner. As a result, the volume of traffic
increases and congestion might be caused. In order to
prevent the congestion, when the size of congestion
window exceeds slow start threshold, the congestion
window becomes to be controlled by congestion
avoidance phase, in which the size of congestion window
increases as a linear manner. After an error is detected,
the size of congestion window decreases drastically. By
repeating these phases, the behavior of the congestion
window becomes saw tooth pattern usually.

The state transition of Linux TCP is shown in Figure 3.
In Linux TCP, when the condition is normal, the
congestion window is increased. On the other hand, the
condition is judged as abnormal if an error occurs, and
the congestion window is decreased in such a case. The
causes of errors include Local Congestion (CWR) which
means the buffer of sender’s device driver is full,
receiving duplicated ACK or SACK (Recovery), and
detecting timeout (Loss). In addition, in the case of Linux
TCP implementation, once the congestion window is set
during a communication, it is not changed unless the
larger volume of data than it is transmitted, and
throughput becomes constant in this case.

duplicate ACK,
SACK

Increase of
Congestion Window

Decrease of
Congestion Window

State:Loss

State:Recovery

State:CWR
Normal state

Unusual state

State:Open

Figure 3. State transition of Linux TCP

There are various congestion window control
algorithms designed for TCP. In Linux TCP, some of
them are implemented, and the algorithm can be changed
among them only with a command. They include Reno,
Binary Increase Congestion control (BIC), Westwood,
and Hamilton TCP (H-TCP).

Reno is a classic algorithm, and plenty of algorithms
are designed based on Reno. Reno detects congestion
with packet loss, and the available bandwidth is decided
based on the value when a packet loss occurs. That is to
say, when a sender receives three consecutive duplicated
ACKs, this is judged as a packet loss, and the congestion

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 539

© 2013 ACADEMY PUBLISHER

window becomes half. The congestion window increases
one on every RTT, afterward. Thus, the congestion
window becomes larger gradually, and falls sharply in
Reno.

BIC is a default algorithm in our experimental
environment. BIC executes binary search to find an
available bandwidth, while general TCP congestion
control performs linear search.

Westwood is designed for an environment in which a
packet loss occurs frequently. This is developed based on
Reno, optimized for wireless communications.

H-TCP is recommended suitable for a broadband and
long-delay environment. This algorithm is designed to
recover quickly to be the original state after congestion.

C. Process of TCP Transmission
In the case of TCP implemented in Linux OS, socket

buffers which store the sending data are connected to a
queue and wait to be processed as shown in Figure 4.
Socket buffer cannot be freed until the time of receiving
ACK.

Sending queue is a member of sk_write_queue in sock
structure defined in the kernel source code. A pointer of
sk_send_head points the socket buffer whose data will be
sent next. In the socket buffer, a part between a queue
head and sk_send_head is in a state whose data has been
sent out but cannot be freed because ACK is not received
yet. Socket buffers behind the point of sk_send_head are
in a queue whose data will be sent out afterward.
sk_send_head is shifted when each segment is transmitted.
In this paper, the state of queue length (between the
queue head and the tail) is discussed in the section VII.

sk_buf

cannot free queue send queue

sk_send_head tail

new s ending data fro m h eresen t segmen t

queue freed

wait ing ACK
ACK received

sk_buf

cannot free queue send queue

sk_send_head tail

new s ending data fro m h eresen t segmen t

queue freed

wait ing ACK
ACK received

Figure 4. TCP Socket Buffer

III. BASIC OPTIMIZATION

A. iSCSI Layer Optimization
iSCSI layer has a lot of parameters[4]. Thay are

exchanged between Initiator and Target during the
negotiation phase. In our research work, we have
optimized iSCSI parameters at first. The optimized
parameters, compared with default settings, are shown in
Table 1.

Table 1. Configuration of iSCSI

Default Optimized

Target side

InitialR2T Yes No

ImmediateData No Yes

FirstBurstLength 65536 1048576

MaxBurstLength 262144 1048576

MaxRecvDataSegmentLength 8192 1048576

Initiator side

node.conn[0].iscsi.MaxRecvDataSegmentLength 131072 1048576

node.session.iscsi.FirstBurstLength 262144 1048576

B. Ethernet Layer Optimization
In order to optimize iSCSI remote storage access

further, NIC parameters of Ethernet are optimized. Intel
PRO/1000PT is used as NICs in our experiment. The
device driver of this NIC provides parameters for
optimization. The optimized NIC parameter settings are
shown in Table 2.

Table 2. Optimized NIC parameter settings

Setting

Target side

MTU 9000

Initiator side

MTU 9000

Txqueuelen 3000

TxDescriptors 4096
FlowControl Disabled

C. Congestion Window Control Algorithms
In order to investigate the effectiveness TCP

congestion window control algorithms, several
algorithms are compared in the case of socket
communication. As TCP congestion window control
algorithm, Reno, BIC, Westwood, and H-TCP are used
for the comparison. The result of comparison shown in
Figure 5. Measured time is 1000sec in this case.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

RTTｍｓ]

Bic

H-TCP

Reno

Westwood

T
hr

ou
gh

pu
t

[Ｍ
ｂ

ｐ
ｓ
]

Figure 5. Throughput comparison using various algorithms (1000[s])

540 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Figure 6 shows the result of the same experiment with
30sec measured time, in order to investigate the influence
of the beginning phase of each algorithm.

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

RTT[ms]

BIC

Reno

Westwood

H-TCP

T
h
ro

ug
h
p
u
t

[
M

b
p
s
]

Figure 6. Throughput comparison using various algorithms (30[s])

According to Figure 5, the difference of algorithms can
be observed in a high latency environment. Figure 6
shows this difference is mostly caused in the beginning
phase of each algorithm.

Although the difference of throughput among
congestion window control algorithms has been observed
in the case of socket communication, throughput is
almost the same with all algorithms in the case of iSCSI
access. Therefore, we have used the default BIC
algorithm in the following iSCSI experiments.

D. Result of Basic Optimization
Figure 7 shows the result of basic optimization, in

which iSCSI layer optimization is most effective. The
theoretical limit of the throughput is also given in the
figure. Iperf [8] is used for the measurement of
performance in socket access, and Network Recorder,
protocol analyzer of ClearSight Network [9], is used for
the measurement of performance in iSCSI storage access.
In our experiment, the advertised window is set as the
size enough for the communication.

Figure 7. iSCSI sequential write throughput in high latency
environment

One can see in Figure 7 that the iSCSI performance is
dramatically improved by the techniques and the obtained

throughput is in good agreement with the theoretical
value if round trip time (RTT) is less than 5ms. However,
even if the optimization is used, the throughput is getting
significantly worse than the theoretical value once RTT
exceeds the 5ms limit. We have not understand why there
is the degradation in the high latency area. We will solve
the question in the following sections.

IV. PREPARATION FOR ANALYSIS

A. System Tools for Analysis
To identify the exact cause of the degradation, we have

developed several tools. We developed a kernel monitor
tool, a packet monitor tool, and data analysis tool, as
shown in Figure 8. The kernel monitor tool allows us to
monitor kernel parameters at Initiator. The kernel
parameters include TCP congestion window (CWND)
size, advertisement window size, and socket buffer queue
size. Generally, user programs cannot recognize the size
of CWND and socket buffer queue because the size is a
parameter controlled in a Kernel space of an operating
system. Therefore we have inserted monitor functions in
TCP source code and implemented a recording
mechanism of TCP parameters within a Linux Kernel
memory space, so that they are accessible from User
space. With this mechanism, we can confirm TCP
parameters by reading a special file for accessing Kernel
memory space.

Parameter settings:
- SCSI/ iSCSI parameters
- TCP/IP parameters
- Ethernet parameters

Kernel monitor
- log trace
- time stamp
- monitoringparameters

Packet monitor
- TCPDump command
- Network analyzer

Network simulator

Network analyzer

Ethernet

SCSI

IP

TCP

iSCSI

storage
(Target)

 server
(Ini tiator)

Based on
Monitoringdata

Figure 8. An overview of system tools for analysis

The packet monitor tool captures the packets received
and sent out at the Initiator. The data analysis tool can
process the information obtained from the kernel and
packet monitor tools. In this way, we can directly or
indirectly observe the procedures of various
communication protocols that are executed during iSCSI
transmission. In the followings, we will explain the
analyses by means of the tools to identify the exact cause
of the iSCSI throughput degradation under high latency
environment.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 541

© 2013 ACADEMY PUBLISHER

B. Model of iSCSI Sequential Write Access
The bottleneck that causes iSCSI performance

degradation in a higher latency environment has been
examined as follows:

First, “dd” command has been used and the packets of
iSCSI block access have been analyzed by using protocol
analyzer. However, packets of various block sizes have
been observed in the network in this case. Therefore, for
the verification process of our model, “sg_dd” command
is used [10]. While there is compatibility between
“sg_dd” command and “dd” command, “sg_dd”
command can access target with the specified size of the
block at SCSI level in iSCSI access. By the
reconfiguration of our kernel, “sg_dd” command enables
us to access target with the size of the 4MB maximum. In
accordance with the change, in iSCSI parameters, values
of both FirstBurstLength and MaxBurstLength are set to
4,194,304. In our experimental system, we have
measured throughput when the access block size is 2MB
and 4MB, and RTT is 0-50ms.

Figure 9 shows the model of iSCSI write access
sequence. Ta means data transfer time of sending from
the first packet to the last one. Tb is time to prepare a
packet to inform the end of writing on Target side to
Initiator side. Tc is an interval until the following write is
executed. Ta, Tb, Tc, and RTT have been measured by
the network analyzer with each RTT set at the network
simulator. We have analyzed of the factor of the
performance degradation in higher latency by measuring
each times.

SCSI WRITE 4096KB

DATA 4096K

SCSI XFER Ready

Ta

Tb

Tb

Tc

Ta

Tc

RTT

(Next) SCSI WRITE 4096KB

Initiator Target

RTT

SCSI WRITE 4096KB

DATA 4096K

SCSI XFER Ready

Ta

Tb

Tb

Tc

Ta

Tc

RTT

(Next) SCSI WRITE 4096KB

SCSI WRITE 4096KB

DATA 4096K

SCSI XFER Ready

Ta

Tb

Tb

Tc

Ta

Tc

RTT

(Next) SCSI WRITE 4096KB

Initiator Target

RTT

Initiator Target

RTT

Figure 9. iSCSI write access sequence

According to a measurement result, Tb and Tc are
constant mostly and RTT is almost the same with the
value set at the network simulator. However, as Figure 10
shows, Ta increases in proportion to RTT. Therefore, the
reason why the performance of iSCSI access decreases
below the theoretical value is that the data transfer time
of sending packets is proportional to RTT, which is
constant generally. Thus, what happens in data transfer
time should be examined in detail.

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50

da
ta

 tr
an

sf
er

 ti
m

e [
s]

RTT[ms]

4096KB
2048KB

Figure 10. Data transfer time in iSCSI write access

V. ANALYSIS OF PACKET TRANSMISSION

As we described in the previous subsection, the factor
of iSCSI performance degradation is owing to data
transfer time in a higher latency environment. Thus, what
happens during data transfer time is examined in detail by
using network analyzer.

A. Analysis of Packets on Initiator
We have observed packets sent from Initiator to Target

with the network analyzer. In this experiment, we have
set 20ms RTT and 4MB iSCSI access block size. Figure
11 shows the result. The horizontal axis indicates time,
and the vertical axis indicates the number of transmission
packets. In this case, packets with “write10” command
and “dataout” command are also shown in the graph for
comparison. The vertical axis of “write10” and “dataout”
command means nothing but only timing. According to
Figure 11, it is observed that after packets are transferred
consecutively within short time, the transmission of
packet suspends temporarily. This behavior is not
observed in normal socket access.

Figure 11. Analysis of packet on Initiator

One sequence of Figure 11 is enlarged and shown in
Figure 12. From Figure 12, the following matters are
observed: After packets are transferred consecutively
within short time, the transmission of packet suspends
temporarily. After constant time, the consecutive
transmission of packets resumes again. Those intervals
are about 20ms, which is equal to RTT.

542 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

When RTT is changed, the intervals are equal to RTT
again. Therefore, the interval should be always equal to
RTT.

1 38000

1 39000

1 40000

1 41000

1 42000

1 43000

1 44000

1 45000

1 46000

1 47000

1 48000

5 .11 5 .13 5 .15 5 .17 5 .19 5 .21 5 .23

pa
ck

et
 n

u
m

be
r

time[s]

dataout

write10

packet

1MB1MB 1MB1MB

11.4ms 11.8ms11.8ms11.8ms

12.6ms 13.1ms 12.3ms 22.1ms

Figure 12. An enlarged part of Figure 11

B. Discussion of Packets Transmission Analysis
It has been observed that only TCP ACKs are received

before the restart of data transmission. According to this
observation, TCP ACKs should bring about the restart of
data transmission.

We have set 20ms RTT and 4MB iSCSI access, and
the packets of iSCSI write access have been analyzed
with network analyzer. As a result, it is observed that
after packets are transferred consecutively with short time,
the transmission of packets suspends temporarily. The
transmission of packets is intermittent. Therefore, the
lack of CWND is naturally suspected to suspend the
transmission of packets. Next, in the following section,
CWND is examined with our kernel monitor.

VI. ANALYSIS OF WINDOW SIZE WITH KERNEL
MONITOR

A. Analysis of TCP Advertisement Window
If the advertisement window of TCP is not large

enough in high latency environment, TCP throughput is
limited and the gap shown in Figure 12 might be created.
However, it is revealed by the kernel monitor tool that the
size of the advertisement window is 5MB. This means
that the size of the advertisement window is wide enough.
Therefore, we can conclude that the cause of the gap is
not advertisement window.

B. Analysis of TCP Congestion Window
It is known that the values of throughput and CWND

have a close relationship. We have used the TCP CWND
monitor tool and “tcpdump” command, and observed the
relationship between CWND and the amount of packets.
In this experiment, we have set 20ms RTT and 4MB
iSCSI access block size. Figure 13 shows the result.

In order to transfer 4MB data efficiently, about 3,000
CWNDs is necessary. However, Figure 13 shows CWND
is 1,200. The measured CWND is smaller than the value
which can transfer 4MB packets effectively.

Figure 13. Analysis of CWND using kernel monitor

According to Figure 13, it seems the cause of the
intermittent packet transmission is that the measured
CWND is smaller than the value which can transfer 4MB
packets effectively. However, from the reference of
Figure 12 and 13, we can find this is not the cause.

The amount of transferred packets in one sequence is
about 700 as shown in Figure 12, while the value of
CWNDs is 1,200 as shown in Figure 13. Thus, the
amount of transferred packets in one sequence is not
enough size that consumes CWNDs. In addition, it is
examined whether CWND really remains, by measuring
the amount of packets on the fly. As a result, maximum
volume of packets on the network is 1.1MB which is
smaller than 1.8MB, the amount of packets that consumes
1,200 CWNDs. This means CWND is not exhausted.

After all, even though CWND is not exhausted, packet
transmission is not continuous in the case of iSCSI access.

VII. ANALYSIS OF TCP SOCKET BUFFER

From previous analyses, the cause of intermittent
packet transmission is neither CWNDs nor advertised
windows. Therefore, we have analyzed TCP socket buffer
next.

A. The Comparison of Queue Length in iSCSI Access and
Socket Access

In the case of socket access, performance is kept to be
equal even in a high latency environment. However, in
the case of iSCSI access, performance is degraded in the
same environment. Therefore, the behavior of queue of
TCP socket buffer is analyzed by comparing the cases of
iSCSI access and socket access using kernel monitor.
RTT is set to be 20ms and 32ms, and access block size is
set to be 4MB. The advertised window is set to be enough
size to transfer data. In the case of measuring throughput
of socket access, Iperf is used. In the case of measuring
throughput of iSCSI access, “sg_dd” command is used.

The Figures from 14 to 17 show the comparisons of
the number of transferred packets measured using
“tcpdump” command with the queue length of socket
buffer measured using kernel monitor in Initiator. The
horizontal axis indicates time, the first vertical axis

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 543

© 2013 ACADEMY PUBLISHER

indicates queue length, and the second vertical axis
indicates the number of transferred packets.

Figure 14. Socket buffer queue length for iSCSI access (RTT = 20ms)

Figure 15. Socket buffer queue length for socket access (RTT = 20ms)

Figure 16. Socket buffer queue length for iSCSI access (RTT = 32ms)

Figure 17. Socket buffer queue length for socket access (RTT = 32ms)

B. The Comparison of Queue Length when RTT = 20ms
From Figure 14, in the case of iSCSI access, it is

confirmed that the maximum queue length is about 300
and it is kept between 0 and 300 in the steady state.
According to Figure 15, on the other hand, it is confirmed
that maximum queue length is about 1300 in the case of
socket access, and it is kept between 200 and 300 in the
steady state. Thus, an obvious difference is observed
between the behavior of TCP socket buffer in iSCSI
access and socket access.

C. The Comparison of Queue Length when RTT = 32ms
From Figure 16, in 32ms RTT also, it is confirmed that

maximum queue length is about 300 in the case of iSCSI
access, and it is kept between 0 and 300 in the steady
state. On the other hand, from Figure 17, it is confirmed
that maximum queue length is about 1300 in the case of
socket access, and it is kept between 200 and 300 in the
steady state.

Because of the same behavior is observed in 20ms
RTT and 32ms RTT, we can conclude that the behavior
of TCP socket buffer in the case of iSCSI access and
socket access should be different.

D. Detailed Analysis of Queue in iSCSI Access
In this subsection, the behavior of queue of socket

buffer in the case of iSCSI access is analyzed in detail. In
Figure 18 and 19, we investigate it with ACK packets. In
this case, the vertical axis of ACK means nothing but
only timing.

Figure 18 shows the behavior of queue in iSCSI access
in the steady state when RTT is 20ms. This is one
sequence of 4MB iSCSI access. Received ACK makes
queue start to increase and packet transmission restart. In
this case, packet transmission suspends after growth of
queue stops.

After suspend of packet transmission, ACK from
Target is received and a part of queue is freed. Because of
the increased queue, packets can be transferred again.
However, queue comes to reach the limit again and
suspend to send packet.

On the other hand, the state of queue in socket access
is shown in Figure 19. Although the queue stops to
increase when it reaches to 1,300, packets transmission is
always continuous. This is considered to be the cause of
performance difference between the case of iSCSI access
and that of socket access in a high latency environment.

Therefore, in iSCSI access, available memory for TCP
socket buffer in the kernel must be smaller than that of
socket access. As a result, in iSCSI remote storage burst
access, the waste of socket buffer makes the intermittent
transmission of data packets.

61500

62000

62500

63000

63500

64000

0

50

100

150

200

250

300

350

6.25 6.27 6.29 6.31 6.33 6.35 6.37 6.39

pa
ck

et
 n

um
be

r

qu
eu

e l
en

gt
h

time[s]

iscsi queue
packet
ACK

Figure 18. An enlarged part of Figure 14

544 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200

400

600

800

1000

1200

1400

0.06 0.07 0.08 0.09 0.1 0.11

qu
eu

e l
en

gt
h

time[s]

socket queue
packet
ACK

Figure 19. An enlarged part of Figure 15

VIII. ANALYSIS OF KERNEL CODE

A. An Overview of Kernel Code Analysis
With our system tool, it is possible to record a time

stamp inside a kernel code during the execution of data
transmission. That is to say, it is possible to recognize
where in the kernel code is executed during data
transmission and how long it takes to execute the specific
part of the kernel code. Therefore, with this system tool,
we have analyzed which part of kernel code is executed
in both cases of iSCSI access and socket access, and
where the cause of the suspension of data transmission is.
After the discovery of the location of problem, we have
inserted a software module for optimization of parameters,
in order to resolve the problem and achieve good
performance.

B. Identification of the Position of Problem
A part of Linux kernel code executed in data

transmission is shown in Figure 20. In both socket access
and iSCSI access, the execution on the kernel code leads
to timeout, in the function of schedule() shown in Figure
20. In the case of socket access, schedule() function in
line 1415 is executed, while in the case of iSCSI access,
schedule() function in line 1439 is executed and it leads
to timeout waiting, and it is finally awaked by ACK after
RTT. Unnecessary timeout is also observed in iSCSI
access.

Thus we have traced the kernel code after the
schedule() function is called with the system tool. This is
shown in Figure 21.

1400fastcall signed long __schedschedule_t imeout(signedlong timeout)
1401{
1402 structtimer_ listt imer;
1403 unsigned long expire;
1404
1405 switch (t imeout)
1406 {
1407 case MAX_SCHEDULE_TIMEOUT:
1415 schedule() ;
1416 gotoout;
1417 default:
1425 if (t imeout < 0)
1426 {
1427 printk(KERN_ERR"schedule_t imeout: wrong timeout"
1428 "value %lx from %p\n", timeout,
1429 __built in_return_address(0)) ;
1430 current->state = TASK_RUNNING;
1431 gotoout;
1432 }
1433 }
1435 expire = timeout + j if fies;
1436
1437 setup_timer(&timer, process_t imeout, (unsignedlong)current);
1438 __mod_timer(&timer, expire) ;
1439 schedule() ;
1440 del_singleshot_timer_sync(&timer);
1441
1442 timeout = expire- jif fies;
1443
1444 out:

Socket access

iSCSIaccess

1400fastcall signed long __schedschedule_t imeout(signedlong timeout)
1401{
1402 structtimer_ listt imer;
1403 unsigned long expire;
1404
1405 switch (t imeout)
1406 {
1407 case MAX_SCHEDULE_TIMEOUT:
1415 schedule() ;
1416 gotoout;
1417 default:
1425 if (t imeout < 0)
1426 {
1427 printk(KERN_ERR"schedule_t imeout: wrong timeout"
1428 "value %lx from %p\n", timeout,
1429 __built in_return_address(0)) ;
1430 current->state = TASK_RUNNING;
1431 gotoout;
1432 }
1433 }
1435 expire = timeout + j if fies;
1436
1437 setup_timer(&timer, process_t imeout, (unsignedlong)current);
1438 __mod_timer(&timer, expire) ;
1439 schedule() ;
1440 del_singleshot_timer_sync(&timer);
1441
1442 timeout = expire- jif fies;
1443
1444 out:

Socket access

iSCSIaccess

Figure 20. Analysis of kernel source code

tcp_sendmsg
/net/ipv4/tcp.c

sk_wait_event();
sk_stream_wait_memory()

/net/core/stream.c

schedule_timeout();
schedule();

/kernel/timer.c

sk_wait_event()
schedule_timeout();

/net/sock.h

Condition
branch

if (!sk_stream_memory_free(sk))
gotowait_for_sndbuf;

Figure 21. Kernel code trace

According to the trace log, the schedule() function is
called as a result of a conditional branch, in which
sk_stream_memory_free() function is included. As
shown in Figure 22, this function just compares
parameters of sk_wmem_queued and sk_send_buf and
returns the larger one. Since we have identified the
location of conditional branch that leads to timeout, we
have inserted an appropriate software module for
optimization of parameters, in order to avoid timeout
waiting.

static inline int sk_stream_memory_free(struct sock *sk)
{
return sk->sk_wmem_queued< sk->sk_sndbuf;
}

l inux+v2.6.18.5/include/net/sock.h#L446

Figure 22. Conditional branch that leads to timeout waiting

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 545

© 2013 ACADEMY PUBLISHER

C. Performance Evaluation
We have measured the throughput for the fixed iSCSI

access, i.e. iSCSI sequential write with the “optimized
socket buffer”. The result given in Figure 23 clearly
shows that the performance is greatly improved compared
to the previous work. Figure 24 and 25 are the diagrams
for the fixed iSCSI access that are corresponding to
Figure 12 and 14 respectively. We have confirmed that
the gap is shortened and the socket buffer size is not
limited any more.

Figure 23. Improvement of data sending rate in fixed iSCSI access

Figure 24. Data sending rate in fixed iSCSI access

Figure 25. Scoket buffer queue length for fixed iSCSI access

IX. CONCLUSION

In this paper, we have developed system tools which
enable us to analyze the detailed behavior of
communication protocols by analyzing kernel parameters
as well as packets dispatched and received. With the help
of these tools, we identified the cause of the problem for
iSCSI access over long distance. Thus, we have added a
necessary software module and achieved a very high
speed iSCSI sequential access, which can be easily
applicable to various remote data backup services.

Note that the applicability of the developed tools is not
limited to the iSCSI remote access. We believe that the
tools are powerful enough to monitor and analyze a broad
range of communication protocols for performance
improvement as well as trouble shooting.

ACKNOWLEDGMENT

Part of this work is based on the research funded by
Japan Science and Technology Agency in 2007 and 2008.
We dedicate this paper to the late Mr. Takahiro Abe who
had worked together and greatly helped us.

REFERENCES

[1] Satran, J. et al.: Internet Small Computer Systems Interface
(iSCSI), IETF RFC 3720,
http://www.ietf.org/rfc/rfc3720.txt, (2004)

[2] Toyoda, M., Yamaguchi, S. and Oguchi, M.: TCP
congestion window controll on an iSCSI read access in a
long latency environment, Proc. 16th IASTED International
Conference on Communication Systemd and Applications
(CSA 2005), pp. 170-175, (2005).

[3] Higa, R., Matsubara, K., Okamawari, T., Yamaguchi, S.
and Oguchi, M.: Optimization of iSCSI Remote Storage
Access through Multiple Layers, The 3rd International
Workshop on Telecommunication Networking,
Applications and Systems (TeNAS’2009) in conjunction
with The IEEE 23rd International Conference on
Advanced Information Networking and Applications
(AINA-09), pp.612-617, (2009).

[4] Shastry, Y., Klotz, S. and Russell R.: Evaluating the effect
of iSCSI protocol parameters on performance, IASTED
International conference on Parallel and Distributed
Computing and Networks (PDCS 2005), Innsbruck,
Austria, pp. 15-17 (2005).

[5] Cillendo E.: Tuning Red Hat Enterprise Linux on IBM e-
server x-series servers, IBM Redpaper, (2005).

[6] Open iSCSI, http://www.open-iscsi.org.
[7] The iSCSI Enterprise Target project,

http://iscsitarget.sourceforge.net
[8] Iperf, http://dast.nlanr.net/Projects/Iperf/
[9] ClearSight Network,

http://www.toyo.co.jp/clearsight/product/analyzer.html
[10] The Linux sg3_utils package,

http://sg.danny.cz/sg/sg3_utils.html

546 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

