Eucalyptus を用いたプライベートクラウドの 消費電力量評価に関する一検討

笠江 優美子†

豊島 詩織†

小口 正人 †

†お茶の水女子大学

1 はじめに

近年,ネットワーク技術や仮想化技術の発展などによ リクラウドコンピューティングが様々な形で社会に普及 している.しかし,それに伴いクラウドを提供する側に おける IT 機器の消費電力量増加が問題となっている.そ こで本研究では,特にセキュリティの観点からも今後の 発展が予想されるプライベートクラウドに注目し,クラ ウド構築ソフトウェア Eucalyptus を用いて実際にプラ イベートクラウドを構築した上で,その構成を変化させ た時の各機器の消費電力を測定し,性能と消費電力の相 関関係等の評価を行う.

プライベートクラウド

プライベートクラウドとは,自身でクラウドを構築す ることによって、パブリッククラウドのセキュリティ等 に対する不安の問題を改善し, ニーズに合ったクラウド を利用できるようにしたものである. 大規模な企業にお けるクラウドとして現在注目されている.

本研究ではクラウド構築基盤ソフトウェア Eucalyptus を用いてプライベートクラウドを構築した. Eucalyptus は、代表的なクラウドである Amazon EC2 と互換性があ), Cloud Controller (CLC), Cluster Controller (CC), Node Controller(NC) の3層構造でクラウドを構築する.

研究背景

現在,クラウドを提供する側での消費電力の増加が問 題となっている.その改善策として,ハードウェアによ る電力削減があるが,これを導入することは容易ではな く,ソフトウェアの観点からの省電力化が必要とされて いる. 本研究では省電力に対するモチベーションを持ち やすい点から特にプライベートクラウドに注目し,実際 に電力を測定し評価することによってソフトウェアの観 点からの省電力化を目指す.

研究概要

本研究では、プライベートクラウドのシステム構成を 変化させ, さらにその上で、インスタンス数を変化させ た場合において、インスタンスの起動、終了、およびデー タベースベンチマーク pgbench による負荷の消費電力を 測定し,評価を行った.

4.1 実験環境

本研究で構築したプライベートクラウドを図1に示す. CLC と CC が動作する Frontend サーバ 1 台と, NC が動作する Node サーバ 3 台の計 4 台でクラウドを構築

サーバ1と2に, DELL Power Edge T100(CPUがIntel Quad-Core Xeon CPU 2.60GHz, Memory が 8GB, OSがXen 3.2-1-i386/Debian GNU/Linux5.0) を用いた. Node サーバ3では, DELL DIMENSION 9200(CPUが Intel Core 2 Duo 2.13 GHz, Memory not 1GB, OS not Xen 3.2-1-i386/Debian GNU/Linux5.0) を用いた.

した . Frontend サーバとしては , DELL DIMENSION

9200(CPU が Intel Core 2 Duo 2.13 GHz, Memory が

1GB, OS が Debian GNU/Linux 5.0) を用いた. Node

図 1: 構築したプライベートクラウド

この実験環境における電力測定器として、システム アートウェア製の高精度小型電力計ワットアワーメータ SHW3A を用いた.これは,コンセントに接続された測 定器に電気製品を繋ぐと,瞬時に消費電力を測定すると いうものである.

4.2 システム構成の変化

本実験では、プライベートクラウドのシステム構成を 3パターンに変化させた. そのシステム構成を図2から 図 4 に示す. どの環境でも,インスタンス数を 1 から 4 まで変化させた場合における,インスタンスの起動,終 了,およびpgbenchによる負荷の消費電力を測定した.

② 4: 実験環境 3

実験環境1では、消費電力の測定対象をHubとNode サーバ1とした.実験環境2では,消費電力の測定対象 を Hub と Node サーバ 1 と 2 とした. ただし, この環 境では, Node サーバ1のみでインスタンスを動作させ, Node サーバ 2 は常にアイドル状態である. 実験環境 3では、実験環境2と変わらないシステム構成,測定対象 であるが , 使うインスタンスを Node サーバ 1 と 2 で分 散させる.

消費電力測定結果

実験環境1から3において行った各実験の結果を,イ ンスタンスの起動,終了,pgbench による負荷の3種類

Study on Evaluation of Energy Consumption using Private Cloud

[†] Yumiko Kasae, Shiori Toyoshima, Masato Oguchi Ochanomizu University (†)

に分類し,比較していく.

5.1 システム構成変化ごとの起動時の消費電力の比較表1に,上記3つの実験環境における,インスタンスの起動時の消費電力と起動にかかった時間を示す.

表 1: 起動にかかった時間と合計消費電力量

		, i – j –		J =					
インスタンス 数	1	2	3	4					
実験環境1									
起動完了までの時間(秒)	101	214	303	488					
合計消費電力(W)	12802	25697	37492	57707					
実験環境2									
起動完了までの時間(秒)	113	259	316	502					
合計消費電力(W)	23829	56054	67276	106194					
実験環境3									
起動完了までの時間(秒)	104	119	215	225					
合計消費電力(W)	22764	26851	48209	53318					

実験環境3と2で合計消費電力を比べると,全体的に実験環境3のほうが小さいことが分かる.それに対し,実験環境3と1を比べると,実験環境3では2台のサーバを動かしているため,ベースの消費電力が大きくなり,インスタンス数1から3では,実験環境3のほうが実験環境1より消費電力が大きいが,実験環境1ではインスタンス数を増やすとその起動に時間がかかり消費電力が大きくなるため,インスタンス数4の場合は,その大小関係が逆転していることが分かる.

5.2 システム構成変化ごとの終了時の消費電力の比較 表2に,上記3つの実験環境における,インスタンス の終了時の消費電力と起動にかかった時間を示す.

表 2: 終了にかかった時間と合計消費電力量

//~ 3 1—73 73	- ,	. I – J –	— = : /:	J == /					
インスタンス 数	1	2	3	4					
実験環境1									
終了完了までの時間(秒)	10	18	29	37					
合計消費電力(W)	1054	1835	3008	3857					
実験環境2									
終了完了までの時間(秒)	12	21	27	38					
合計消費電力(W)	2484	4355	5616	7857					
実験環境3									
終了完了までの時間(秒)	10	10	19	24					
合計消費電力(W)	2263	2341	4007	5058					

この表により、どの実験環境でも、インスタンスの個数が増えれば、終了が完了するまでの時間と合計消費電力が増えていることがわかる.

5.3 システム構成変化ごとの pgbench による負荷を かけた時の消費電力の比較

表3に,各測定において,pgbenchによる負荷をかけた場合の,実行時間と単位時間当たりにおける平均消費電力,および,その合計消費電力を示す.

表 3: pgbench の実行時間と平均消費電力, および合計 消費電力量

インスタンス数	1	2	3	4					
実験環境1									
実行時間(秒)	196.555	97.179	61.44493	51.9665					
実行時の平均消費電力(W/s)	131.57	146.29	154.48	158.53					
合計消費電力(W)	25860.74	14216.32	9492.013	8238.249					
実験環境2									
実行時間(秒)	198.899	95.551	61.1586	52.462					
実行時の平均消費電力(W/s)	228.055	242.0735	253.7924	258.7291					
合計消費電力(W)	45359.91	23130.36	15521.59	13573.45					
実験環境3									
実行時間(秒)	193.585	87.231	55.327	40.60525					
実行時の平均消費電力(W/s)	231.9689	254.771	268.169	283.5454					
合計消費電力(W)	44905.7	22223.93	14836.99	11513.43					

各実験環境では、インスタンス数が増えれば、単位時間当たりの平均消費電力は増えるが、実行時間が短くなるので、合計消費電力は小さくなることがわかる、実験環境3と2を比べると、単位時間当たりの平均消費電力は、どのインスタンス数の場合も実験環境3のほうが大きいのに対し、実行時間は実験環境2のほうが長いことから、合計消費電力は実験環境3のほうが小さくなる.

6 評価

本章では,インスタンスの起動,終了,pgbenchによる負荷の3つによる総消費電力と性能の評価を行う.こ

れら3つのインスタンスの状態の変化を一連の流れとしてとらえ,それらにかかった時間や消費電力を比較していく.

6.1 総消費電力の評価

図5に,インスタンス数による総消費電力の移り変わりを示す.

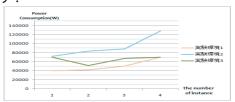


図 5: インスタンス数による総消費電力の比較

実験環境2での総消費電力が大きいことから,アイドル状態のサーバは電源を落としておくほうが望ましいことが分かる.実験環境3でのインスタンス数2の場合の総消費電力が下がっているのは,起動,負荷,終了における消費電力のバランスがよかったためだと考えられる.また,消費電力を考慮した場合,実験環境1が相応しかったことがわかるが,インスタンス数4の場合は,実験環境1と3でほぼ総消費電力量が等しくなっており,もしインスタンス数をさらに増やすことが可能な場合は,その大小が逆転する可能性もあるということがわかる.

6.2 実行時間の合計による評価

図 6 にインスタンスの個数による実行時間の合計の移り変わりを示す.

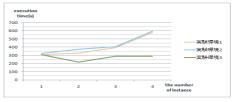


図 6: インスタンス数による合計実行時間の比較実験環境3において,インスタンス数2の場合の実行時間の合計が下がっているのは,起動,負荷,終了における実行時間のバランスがよかったためだと考えられる.また,実験環境1と2は,ほぼ似たグラフとなっているのに対し,実験環境3は,どのインスタンスの個数の場合でも値が小さいことことから,性能を重視した場合におけるシステム構成として,実験環境3が相応しいことがわかる.

7 まとめと今後の課題

プライベートクラウドを構築し、そのシステム構成を 変化させた場合の、インスタンスの起動、終了、および pgbenchによる負荷の消費電力を測定した。

本実験において、性能を重視するには、実験環境3のシステム構成が良いが、消費電力を考えると実験環境1が良いことがわかった。しかし、負荷が大きくなりすぎた場合には、その負荷を分散させ、早く実行させることを目指した方が、消費電力的にも良くなるような傾向があるということがわかった。今回の測定ではpgbenchのみでの評価だったため、今後は様々なベンチマークを使って評価を行っていきたいと考えている。また、ネットワークストレージを使ったときは、どのような振舞いになるか見ていきたいと考えている。