
TCP CONGESTION WINDOW CONTROL ON AN ISCSI READ ACCESS
IN A LONG-LATENCY ENVIRONMENT

Machiko Toyoda † Saneyasu Yamaguchi ‡ Masato Oguchi †
† Ochanomizu University Otsuka 2-1-1, Bunkyo-ku, Tokyo, Japan

‡ Institute of Industrial Science, The University of Tokyo Komaba 4-6-1, Meguro-ku, Tokyo, Japan
machiko@ogl.is.ocha.ac.jp sane@tkl.iis.u-tokyo.ac.jp oguchi@computer.org

ABSTRACT
As the broadband networks are widely used, IP-SAN is

expected as the next generation’s SAN because of its low
cost. The iSCSI protocol, represented as IP-SAN technol-
ogy, is becoming increasingly important. However, the per-
formance of iSCSI network is lower than that of network
based only on TCP/IP, due to its complex protocol process-
ing in accessing storage with iSCSI.

In this paper, we present performance improvement us-
ing a dynamic Congestion Window control method to sta-
bilize throughput unevenness. We evaluated iSCSI network
performance with a remote storage access on iSCSI proto-
col using the proposed method. As a result, iSCSI perfor-
mance improved compare with the case of not using the
proposed method in a long-latency environment, and we
confirmed the proposed method is effective.

KEY WORDS
iSCSI, Congestion Window Control, Remote Storage

1 Introduction

Because the performance of computer systems has been
improved and Gigabit Ethernet is widely used, a large
amount of data can be processed in a high speed. Vari-
ous sorts of applications, which store mass volume of data
as multimedia contents, have appeared also. As a result,
the volume of data that computer systems process has in-
creased remarkably. In order to consolidate storage, Stor-
age Area Network (SAN) is introduced and becomes pop-
ular which reduces storage management cost.

FC-SAN, which is widely used already, connects server
and storage with Fibre Channel. Fibre Channel has a light
processing protocol, and data transmission load charged to
server CPU is relatively low. However, in the case of FC-
SAN, the compatibility of interconnection isn’t necessarily
high if the makers of FC devices are different. Moreover,
both an installation cost and a management cost are rela-
tively high because FC products are expensive. For this
reason, IP-SAN configured with inexpensive Ethernet and
TCP/IP is introduced. As a standard, iSCSI protocol is be-
coming important in IP-SAN. iSCSI, ratified by the IETF
in February 2003, connects between server (Initiator) and
storage (Target) with SCSI command. Consequently stor-

age devices at remote place can be accessed as if they are
attached directly.

For improving performance of a remote storage access
using iSCSI protocol, we have proposed an idea of a stor-
age access with dynamic Congestion Window control[1].
In this paper, iSCSI storage access performance is eval-
uated using the Congestion Window control method in
which remote storage is accessed with iSCSI in network
environments of various latencies. iSCSI network through-
put is improved about 28% maximum in this experiment.
We describe the iSCSI protocol behavior and discuss the
effectiveness of our proposed method.

The rest of this paper is organized as follows. Section 2
covers study background, and section 3 introduces dynamic
Congestion Window control method. In section 4, we show
the experimental result on iSCSI sequential read access us-
ing the proposed method in the environment of various la-
tencies, and evaluate performance of the proposed method.
Section 5 describes the packet behavior of iSCSI protocol
in a long-latency environment, and discusses how it affects
the performance. Section 6 covers related works, and sec-
tion 7 presents the conclusion.

2 Background of Our Research Works

2.1 Linux TCP Implementation

Transmission Control Protocol (TCP) uses a concept
of Congestion Window (CWND). CWND is a parameter,
which limits the behavior of a data sender, for the purpose
of the network congestion control. That is to say, CWND
means the number of maximum packets that can be sent
consecutively without receiving a reply packet of Acknowl-
edgement (ACK) from a data receiver. CWND increases
one whenever a data sender receives one ACK. In Linux
OS used in our experiment, CWND increases every time
the data sender receives one ACK if the state of communi-
cations is judged as normal. However, If TCP implemen-
tation detects an error and decides the state of communica-
tions as unusual, CWND reduces dramatically. The cases
in which CWND reduces are as follows (Figure 1).

1. CWR: Detecting Local Congestion error in which de-
vice driver buffer of the data sender overflows.

2. Recovery: Receiving duplicated ACKs or SACK.



State Loss

State Recovery

State CWR

State Open

Local device

congestion

duplicate ACK,
SACK

Timeout

Normal state

Unusual state

Increase of
Congestion Window

Reduction of
Congestion Window

Received
normal
ACK

Received 
ACKRecovered State Loss

State Recovery

State CWR

State Open

Local device

congestion

duplicate ACK,
SACK

Timeout

Normal state

Unusual state

Increase of
Congestion Window

Reduction of
Congestion Window

Received
normal
ACK

Received 
ACKRecovered

Figure 1. The state transition of Linux TCP implementation

Data

Initiator

Target
Read

Request
Data Send Receive

Notification
Response

Time

Figure 2. The sequence of iSCSI sequential read access

3. Loss: Detecting timeout.

Linux TCP implementation doesn’t change the window
size as long as the value of CWND, which has been set dur-
ing the communication, isn’t consumed completely before
receiving ACKs. In such a case, we confirmed the through-
put remains stable.

2.2 Issues of Accessing Remote Storage us-
ing iSCSI

iSCSI encapsulates SCSI command, which is widely
used in Direct Attached Storage (DAS), within a TCP/IP
packet and transports it on a TCP/IP network[2][3]. In
FC-SAN, the limit of the communication distance is about
10km. In iSCSI, on the other hand, communication dis-
tance isn’t limited because it uses TCP/IP network, and
thus iSCSI is expected to be used for long distance com-
munications such as Storage Outsourcing and Data Backup
to a data center.

Figure 2 is a packet transport sequence on the iSCSI
sequential read access. SCSI Command PDU meaning a
Read request in the iSCSI layer is sent (”Read Request” in
figure 2) after the read system call in the application has
been issued. The block size for the transport request is
written in SCSI Command PDU. Therefore, Target sends
data of the requested size successively (”Data Send” dot-
ted arrow in figure 2), after Target that has received SCSI
Command PDU replies SCSI Data-In PDU (”Data Send”
solid arrow in figure 2). Initiator returns ACK for the ar-
rived data in the TCP layer (”Receive Notification” in fig-
ure 2). Target sends SCSI Response PDU as a response
packet (”Response” in figure 2) when ACK indicating the
arrival of the last data at Target, this is the end of one cycle
of the Read command.

If we perform communications using a socket in a net-

0

100

200

300

400

500

600

700

800

900

0 300 600 900 1200 1500 1800

Time [sec]

C
o
n
g
es

ti
o
n

W
in

d
o
w

Socket iSCSI

Figure 3. CWND in both socket communication and iSCSI
communication cases

work based only on TCP/IP (in the rest of this paper, this
is referred to as ”socket communication”), the TCP self
clocking mechanism works as time has passed and the TCP
implementation sends data little by little at the reception
timing of ACKs. Therefore the sending speed of packets is
controlled properly. In iSCSI, on the other hand, the burst
of packet transmission doesn’t disappear because the data
is sent all together after Target has received a Read request.
Consequently, CWR error in iSCSI is easy to occur in com-
parison with the socket communication, and the growth of
CWND is also less than that of the socket communication.
Figure 3 shows the change of CWND in both socket com-
munication and iSCSI communication cases when the de-
lay time is 16ms. In this figure, all the causes of CWND
reduction are due to the CWR error. This figure indicates
that CWND of the socket communication grows up to a
large value in most cases. However, CWND of the iSCSI
communication doesn’t grow up. In our paper [4], we have
found out that throughput has a close relationship with the
size of CWND, and throughput is unstable in the case that
CWND increases and decreases repeatedly. When we per-
form a remote storage access using iSCSI, it is important
for the better performance that frequency of CWR error
should be reduced and CWND should be kept as a large
value.

3 Dynamic Congestion Window Control
Method

In this section, we introduce the dynamic congestion
control method, which balances the uneven behavior of
throughput observed on iSCSI storage access, proposed for
improving the performance.

As described in the previous section, particular care must
be taken for iSCSI because the behavior of iSCSI network
is different from that of TCP/IP network. Since we have no-
ticed a close relationship between the size of CWND and
throughput, we have proposed the method that stabilizes
increase and decrease of CWND by controlling the access
block size dynamically[1]. Figure 4 shows the outline of
our proposed method.

Generally, user programs can’t recognize the size of
CWND because CWND is controlled in a Kernel space.
Therefore we have inserted monitor functions in TCP
source code and implemented a recording mechanism of



InitiatorInitiator

Ethernet
TCP/IP
iSCSI
SCSI

Middleware
Application

Ethernet
TCP/IP
iSCSI
SCSI

Middleware
Application

Ethernet
TCP/IP
iSCSI
SCSI

Ethernet
TCP/IP
iSCSI
SCSI

TargetTargetKernel Memory
Space

CWNDCWND

Block Size
Monitor

CWND
Notify

Block Size
Specify iSCSI Read Request

Sequential Read
Data Transfer

Figure 4. The concept of CWND control method

TCP parameters within a Kernel memory space, so that
they are accessible from User space. With this mechanism,
we can confirm TCP parameters by reading a special file
for accessing Kernel memory space. In the CWND control
method, we have implemented this mechanism on Target.
An application of Initiator adjusts the block size of storage
access by receiving CWND notification from Target. The
controlling process of our proposed method is as follows.

1. Target monitors CWND and observes its change.

2. Target notifies the size of CWND when CWR is de-
tected and CWND reduces, and notifies the limit size
of CWND (the max size of CWND without CWR er-
ror) when CWND remains stable. In addition, Target
recodes the size of notified CWND.

3. When Initiator receives the notification, the middle-
ware decides the block size based on CWND and the
application on Initiator modifies the block size.

4. Initiator sends a sequential read command for Target.

5. Target transmits the data of requested block size.

6. This process iterates whenever Target detects CWR or
decides that CWND is stable.

After applying the proposed method, CWND stays at the
value of a limit, in which CWR error doesn’t occur. Conse-
quently the block Size is the optimized value calculated by
the proposed method. In the proposed method, the speci-
fied block size calculated in the middleware is as follows.

Transmission Block Size [byte] = the Size of CWND ×
Maximum Transmission Unit (MTU)

The size of MTU used in our experiment is 1448Byte ex-
cept for the TCP/IP header (including the option) from the
maximum segment length of Ethernet (1500Byte). The in-
fluence of the overhead of monitor on the performance is
little because the CWND monitor on Target performs at in-
tervals of a few seconds.

4 Experiment for Performance Evaluation
using Congestion Window Control Method

In this section, we have experimented for evaluating
iSCSI performance with the Congestion Window control
method in network environments of various latencies. We
have compared the cases in which the proposed method is
used and not used.

Table 1. Experimental machines

CPU Intel Xeon 2.4GHz
Main Memory 512MB DDR SDRAM
OS Initiator, Target: Linux2.4.18-3

Dummynet: FreeBSD 4.9 - RELEASE
NIC Initiator, Target: Intel PRO/1000XT Server Adapter

Dummynet: Intel PRO/1000MT Server Adapter

4.1 Experimental Setup

Our experimental system is as follows. We have estab-
lished TCP/IP connection with Gigabit Ethernet between
Initiator and Target. 1000Base-T Switching Hub is inserted
in the case of experiment with no-delay and FreeBSD
Dummynet[5] as an artificial delay machine is inserted in
the case of experiment with delay, between Initiator and
Target, respectively. Initiator, Target, and Dummynet are
constructed on Personal Computers. We have used Linux
as an OS of Initiator and Target, and FreeBSD as an OS
of Dummynet. In order to study the network performance
of an iSCSI storage access, Target has been set up with the
memory mode in which a disc access isn’t executed actu-
ally. Table 1 shows our experimental machines.

As an iSCSI implementation, we have used UNH IOL
reference implementation ver.3 on iSCSI Draft 18[6] of-
fered from the University of New Hampshire InterOper-
ability Laboratory on the Target machine. In this UNH
implementation, even if we issue a read command of large
block size, the SCSI layer divides the requested block into
a small block size. For this reason, the performance of stor-
age access using iSCSI is degraded[7]. In our experiment,
instead of using the UNH implementation on the Initiator
machine, we have used an Initiator program written by our-
selves which has equivalent functions to the UNH imple-
mentation of Initiator and can perform data transfer with
a large block size. This Initiator program written by our-
selves works as an application in the user space and com-
municates with Target iSCSI protocol on a TCP/IP connec-
tion.

4.2 Outline of the Experiments

Our experiment measures the performance of iSCSI se-
quential read access from Initiator to a raw device of Target
in network environments of various latencies. The block
size specified in Initiator is 1024KB when the proposed
method is not used, and the initial value of the block size
specified in Initiator is 1024KB also when the proposed
method is used. The total data size reading from Target
is 100GB.

4.3 Experimental Result not using the Pro-
posed Method

As an experimental result not using the proposed
method, Figure 5 shows CWND, block size, and through-
put when one-way delay time is 16ms. In this figure, all
the causes of CWND reduction are due to the CWR error.



0

200

400

600

800

1000

1200

0 900 1800 2700 3600

Time [sec]

C
W

N
D

,
B

lo
ck

S
iz

e
[K

B
]

0

3

6

9

12

15

T
h
ro

u
g
h
p
u
t
[M

B
/sec]

CWND Block Size Throughput

Figure 5. CWND, the block size, and throughput (one-way
delay time: 16ms)

0

20

40

60

80

100

120

0 2 4 8 16

1 Way Delay Time [ms]

T
h
ro

u
g
h
p
u
t
[M

B
/s

ec
]

Figure 6. The average throughput

Throughput changes dramatically as CWND increases and
decreases. We have compared throughput when CWND
achieves the maximum value with throughput after CWND
has decreased. As a result, the difference of both cases is
about 3MB/sec. This difference is relatively large in a net-
work environment, in which the average total throughput
is about 10MB/sec. Figure 6 shows the average through-
put when Initiator reads the 100GB data on an environment
with various delay time. As delay time increases, the per-
formance of iSCSI access decreases remarkably. In our ex-
periment, because this is a read access without accessing to
a disc, the result is only the network performance of iSCSI.
This is the performance of a limit, which iSCSI protocol
can provide, in a long-latency environment.

4.4 Experimental Result using the Proposed
Method

CWND, block size, and throughput when the experi-
ment uses the proposed method is shown in Figure 7 (delay
time: 8ms), 8 (delay time: 16ms). When Target detects
CWR error, the middleware of Initiator works and controls
CWND by changing the block size for accessing. Different
from the case of communications not using the proposed
method, the block size is set up to be a slightly small value.
However, after CWND has been stabilized throughput, has
improved greatly compared with the case when CWND has
been greatly changing.

Figure 9 shows the average throughput when Initiator
reads 100GB data on an environment with various delay
time. In addition, Figure 10 shows the graph that com-
pares the average throughput of three cases, when CWND

0

200

400

600

800

1000

1200

0 900 1800 2700 3600 4500

Time [sec]

C
W

N
D

,
B

lo
ck

S
iz

e
[K

B
]

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t
[M

B
/sec]

CWND Block Size Throughput

Figure 7. CWND, the block size, and throughput using the
proposed method (one-way delay time: 8ms)

0

200

400

600

800

1000

1200

0 900 1800 2700 3600 4500

Time [sec]

C
W

N
D

,
B

lo
ck

S
iz

e
[K

B
]

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t
[M

B
/sec]

CWND Block Size Throughput

Figure 8. CWND, the block size, and throughput using the
proposed method (one-way delay time: 16ms)

is controlled, when CWND isn’t controlled, and after con-
trolled CWND is stabilized. In the total performance, as
delay time increases, we confirm that the performance de-
creases greatly from Figure 9. However, when we com-
pare the throughput of using the proposed method with that
of not using, we can confirm from Figure 10 that control-
ling CWND is effective to prevent the reduction of perfor-
mance. If the total data size of the sequential read access
is larger, the difference of performance between the case
of controlling CWND and that of not controlling CWND
should to be larger. In the communication environment
with small latency, we had better transmit data using a large
block size. On the other hand, in the environment with long
latency, we had better control the increase and decrease of
CWND, so as to keep to be stable.

5 Communications Control by iSCSI Proto-
col Behavior and Its Effect to Performance

In this section, we explain the packets’ behavior of iSCSI
sequential read access in a long-latency environment, and
discuss why CWND control method is effective in such an
environment.

According to the experimental result of the previous sec-
tion, we have obtained that, the performance in a long-
latency environment has improved by keeping CWND sta-
bilized even if the block size is slightly smaller. We had
thought that a larger block size had better performance be-
cause the block size is defined as a data length sent at one
time. However, if the block size is too large, CWR error oc-



0

20

40

60

80

100

120

0 2 4 8 16

1 Way Delay Time [ms]

T
h
ro

u
g
h
p
u
t
[M

B
/s

ec
]

Figure 9. The average throughput using the proposed
method

0

5

10

15

20

25

30

35

40

4 8 16

1 Way Delay Time [ms]

T
h

ro
u

g
h

p
u

t
[M

B
/s

e
c
]

No Control

Control (Total)

Control (CWND Stable)

Figure 10. The comparison of average throughput in long-
latency environment

curs because a send buffer of a data sender overflows. As
a result, CWND decreases greatly since TCP implementa-
tion decides that the sent data is too large. In a long-latency
environment, if CWND is small, a data sender does nothing
but wait for ACK for a long time.

Figure 11 and 12 show the iSCSI packets’ behavior when
we perform iSCSI sequential read access in a short-latency
and a long-latency environments. The iSCSI packets’ be-
havior shown in these figures and Figure 13 focuses on the
part of ”Data Send” in Figure 2 in detail. Solid arrows
from Target to Initiator represent packets including data la-
beled as ”Data”, and dotted arrows from Initiator to Tar-
get represent ACK. The number of data arrows is equal to
CWND. When we perform an iSCSI sequential read access
in a short-latency environment, the waiting time for the data
transmission in Target is short (Figure 11) because ACK is
replied soon. However, the response time becomes long in
a long-latency environment. Consequently, the arrival of
ACK to the sent data is late and the waiting time for the
data transmission in Target increases greatly (Figure 12).
Without the proposed method, the number of sent packet
is different each time because CWND is changing. On the
other hand, Figure 13 shows the iSCSI protocol behavior
using the proposed method in a long-latency environment.
CWND is stabilized with the proposed method, thus, the
number of sent ”Data” packets from Target to Initiator is
kept to be the same. In this case, Target can keep trans-
mitting the maximum number of packets within the range
where CWR error doesn’t happen. As a result, Target can

Initiator

Target
WaitingTime

D
at

a

D
at

aA
ck

A
ck

WaitingTime

D
at

a

Figure 11. The sequential read access on short-latency en-
vironment

Initiator

Target

D
at

a

WaitingTime WaitingTime

D
at

a

A
ck

A
ck

Figure 12. The sequential read access on long-latency en-
vironment

Initiator

Target
D

at
a

WaitingTime

D
at

a

A
ck

A
ck

WaitingTime

Figure 13. The sequential read access using the proposed
method on long-latency environment

transmit the data efficiently, even if the block size is slightly
smaller in an iSCSI sequential read access. In the case
of not controlling CWND shown in Figure 12, the wait-
ing time is short if the number of sent packets at one time
is large. However, CWR error happens regularly so that
CWND is reduced drastically. While CWND is reduced,
Target is kept waiting for a long time after it transmits a
few packets until ACK is received. Due to this inefficient
behavior, iSCSI performance decreases dramatically in a
long-latency environment. That is to say, it is important to
prevent the reduction of CWND as the delay time becomes
longer.

Table 2 shows the rate of throughput increase of the ex-
perimental result using the proposed method against that
not using it. When the delay time is short, the commu-
nication performance decreases a little using the proposed
method because the block size is slightly small. In con-
trast, when the delay time is long, the communication per-
formance improves using the proposed method. The rate
of improvement achieves about 28% when the delay time
is 16ms, which is the case of longest delay in this experi-
ment.

6 Related Work

As related works of iSCSI, P.Sarkar et al.[8] compares
iSCSI software implementation with iSCSI hardware im-
plementation. P.Radkov et al.[9] compares iSCSI perfor-



Table 2. Performance improvement of the proposed
method

1 Way Throught
Delay Time Improvement

0ms -9.1%
2ms -7.9%
4ms 7.0%
8ms 19.7%

16ms 28.3%

mance with NFS performance. However, these studies just
measured the overall system performance and didn’t ana-
lyze the detailed behavior inside the system.

P.Gurumohan et al.[10] indicates that iSCSI performance
reduces due to the excessive processing redundancy over
several protocol layers, and proposes a method of data han-
dling in the form of fixed data units called ”quanta”. Al-
though their viewpoint is the same as ours in terms of a
cause of iSCSI performance decrease, the approach for im-
proving performance is different.

R.Takano et al.[11] and K.Kumazoe et al.[12] pay atten-
tion to the technique proposed as new TCP that modifies the
existing implementation, describe the performance evalua-
tion and discuss the CWND behavior for communications.
Their standpoint of research works in which throughput has
a close relationship with the size of CWND is the same
with ours. However, the method described in these papers
improves the performance by modifying the existing TCP.
Therefore, these studies are different from ours that intends
to improve the performance by using existing TCP used
generally and widely.

7 Conclusion

In this paper, we have evaluated the performance of
iSCSI sequential read access in network environments with
various latency using a dynamic Congestion Window con-
trol method to stabilize throughput unevenness. Because
iSCSI protocol performs the communication that produces
burst traffic, the CWND reduction degrades the perfor-
mance as delay time becomes long. When CWND is kept
to be stabilized in a long-latency environment, throughput
has improved about 28% maximum. Moreover, we have
described a packet behavior of iSCSI protocol in a long-
latency environment, and discussed the effectiveness of the
proposed method.

As a part of future works, we will evaluate an iSCSI
write access and an iSCSI random access using the pro-
posed method. We should evaluate the fairness of our
method when multiple TCP sessions are used between Ini-
tiator and Target. Also, an evaluation of the packet loss
case will be our future work.

Acknowledgment

This project is partly supported by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology, under

Grant 13224014 of Grant-in-Aid for Scientific Research on
Priority Areas.

References

[1] M. Toyoda, S. Yamaguchi, and M. Oguchi: ”A Study
of Performance Improvement by Controlling TCP
Congestion Window on iSCSI Access,” IEICE Tech-
nical Reports, CPSY2004-50, December 2004, pp.1-
6.

[2] iSCSI Specification,
http://www.ietf.org/rfc/rfc3720.txt?number=3270/

[3] SCSI Specification,
http://www.danbbs.dk/˜dino/SCSI/

[4] M. Toyoda, S. Yamaguchi, and M. Oguchi: ”Rela-
tionship between TCP Congestion Window and Sys-
tem Performance on iSCSI Storage Access,” Proc.
3rd Forum on Information Technology (FIT2004), B-
004, September 2004, pp.107-109.

[5] L.Rizzo: ”dummynet”,
http://info.iet.unipi.it/˜luigi/ip dummynet/

[6] InterOperability Lab: Univ, of New Hampshire,
http://www.iol.unh.edu/consortiums/iscsi/

[7] S. Yamaguchi, M. Oguchi, and M. Kitsuregawa:
”iSCSI Analysis System and Performance Improve-
ment of Sequential Access in Long-Latency Environ-
ment,” IEICE Transaction on Information and Sys-
tems, Vol.J87-D-I, No.2, February 2004, pp.216-231.

[8] P.Sarkar, S.Uttamchandani, and K.Voruganti: ”Stor-
age over IP: When Does Hardware Support help?,”
Proc. FAST 2003, USENIX Conference on File and
Storage Technologies, January 2003, pp.231-244.

[9] P.Radkov, L.Yin, P.Goyal, P.Sarkar, and P.Shenoy:
”Performance Comparison of NFS and iSCSI for IP-
Networked Storage,” Proc. FAST 2002, USENIX Con-
ference on File and Storage Technologies, March
2004, pp.101-114.

[10] P.Gurumohan, S.Narasimhamurthy, and J.Hui:
”Quanta Data Storage: A New Storage Paradigm,”
Proc. 12th NASA Goddard Conference on Mass
Storage Systems and Technologies, April 2004,
pp.101-107.

[11] R. Takano, Y. Ishikawa, T. Kudoh, M. Matsuda, Y.
Kodama, and H. Tezuka: ”The Analysis of TCP/IP
Communication Behavior on Parallel Applications,”
Internet Conference 2003, October 2003.

[12] K. Kumazoe, Y. Hori, M. Tsuru, and Y. OIE: ”Trans-
port Protocols for Fast Long-Distance Networks:
Comparison of Their Performances in JGN,” IEICE
Technical Reports, NS2003-354, IN2003-309, March
2004, pp303-308.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.283 790.866]
>> setpagedevice


